timm中模型更换huggingface模型链接

news2025/1/12 3:55:00

现在timm默认使用huggingface的链接了,错误链接如下:

'(MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /timm/swinv2_tiny_window8_256.ms_in1k/resolve/main/model.safetensors (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x0000015795F1D910>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: dc707670-3d22-4ad0-889d-ddd7fd586173)')' thrown while requesting HEAD https://huggingface.co/timm/swinv2_tiny_window8_256.ms_in1k/resolve/main/model.safetensors
'(MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /timm/swinv2_tiny_window8_256.ms_in1k/resolve/main/pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x0000015795F1EE90>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: 29f7dc6c-c93e-4de8-9752-73b68f1e3259)')' thrown while requesting HEAD https://huggingface.co/timm/swinv2_tiny_window8_256.ms_in1k/resolve/main/pytorch_model.bin
Traceback (most recent call last):
  File "D:\ProgramData\anaconda3\Lib\site-packages\urllib3\connection.py", line 174, in _new_conn
    conn = connection.create_connection(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "D:\ProgramData\anaconda3\Lib\site-packages\urllib3\util\connection.py", line 95, in create_connection
    raise err
  File "D:\ProgramData\anaconda3\Lib\site-packages\urllib3\util\connection.py", line 85, in create_connection
    sock.connect(sa)
TimeoutError: timed out

由于国内不能链接huggingface,可以更换成其他的代理链接,在import的位置加入

os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"

在这里插入图片描述

摘要

🔥🚀本专栏教你如何嗨翻Yolov8!🚀🔥

💡升级大招:汲取最新论文精华,给你一整套Yolov8升级秘籍!包括但不限于:注意力加持、卷积大换血、Block革新、Backbone升级、Head重塑,还有优化器大换血!每篇都是干货,给你N种升级选择!

📊订阅专享:订阅后,独家资源等你解锁!实测数据集、详细代码和PDF教程,全部为你精心准备,只为你能更深入地学习和提升!

💖专栏宗旨:质量为王,力求每篇都是精品!用心打造,只为更好的你!

🎉订阅福利:快来订阅吧!感谢大家一路支持!还有专属QQ群等你加入,答疑解惑,一起进步!订阅后,输出订单号,即可入群!

🚀持续更新:已经更新136篇,精彩不断,持续更新中…等你来探索!记得订阅后,更多独家资源等你来拿!

在这里插入图片描述

💎💎💎基础与实战篇💎💎💎

YoloV8实战:各种图绘制汇总(mAP50、mAP50-95、loss、PR_curve、F1_curve)|科研必备|绘图神器

YoloV8的一些使用问题

Yolov8网络详解与实战(附数据集)

YoloV8实战:复现基于多任务的YoloV8方案

YoloV8实战:使用YoloV8实现水下目标检测(RUOD)

YoloV8实战:使用YoloV8实现水下目标的检测(DUO数据集)

YoloV8实战:使用YoloV8检测钢材表面缺陷

YoloV8实战:图像分割|从数据标注到训练、测试|手把手教你实现

YoloV8实战:YoloV8-World应用实战案例

💎💎💎改进Neck篇💎💎💎

YoloV8改进策略:Neck篇|自研Neck层融合模型|深度特征与浅层特征融合,涨点明显|附结构图(独家原创)

YoloV8改进策略:Neck层改进、注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:Neck和Head改进|ECA-Net:用于深度卷积神经网络的高效通道注意力|多种改进方法|附结构图

YoloV8改进策略:Neck改进改进|ELA(独家原创与复现)

YoloV8改进策略:改进Neck|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:基于频域多轴表示学习模块|全网首发|高效涨点|代码注释详解

YoloV8改进策略:Gold-YOLO高效目标检测器与YoloV8激情碰撞

YoloV8改进策略:全新特征融合模块AFPN,更换YoloV8的Neck

YoloV8改进策略:轻量级Slim Neck打造极致的YoloV8

YoloV8改进策略:增加分支,减少漏检

YoloV8改进策略:注意力改进、Neck层改进|自研全新的Mamba注意力|即插即用,简单易懂|附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:Neck层改进|BiFPN+小目标分支实现小目标检测精度的大幅度上升(独家原创)

YoloV8改进策略:Neck和Head改进|GCNet(独家原创)|附结构图

💎💎💎BackBone改进篇💎💎💎

YoloV8改进策略:主干网络篇|MobileNetV4主干替换YoloV8的BackBone(独家原创)

YoloV8改进策略:BackBone|融合改进的HCANet网络中的多尺度前馈网络(MSFN)|二次创新|即插即用

YoloV8改进策略:改进BackBone|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:BackBone改进|DCNv4最新实践|高效涨点|多种改进教程|完整论文翻译

YoloV8改进策略:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:BackBone改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

YoloV8改进策略:BackBone改进|TransNeXt——ViT的鲁棒Foveal视觉感知(独家原创)

YoloV8改进策略:BackBone改进|焦点调制网络

YoloV8改进策略:BackBone改进|PKINet

YoloV8改进策略:BackBone改进|ECA-Net:用于深度卷积神经网络的高效通道注意力

YoloV8改进策略:BackBone改进|EfficientVMamba(独家原创)

YoloV8改进策略:BackBone改进|2024年最新注意力机制ELA(独家原创,全网首发)

YoloV8改进策略:改进BackBone|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:基于频域多轴表示学习模块|全网首发|高效涨点|代码注释详解

YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点

YoloV8改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现YoloV8的有效涨点

YoloV8改进策略:基于RevCol,可逆的柱状神经网络的完美迁移,YoloV8的上分利器

YoloV8改进策略:Hiera改进YoloV8,实现精度和速度的双提升!

YoloV8改进策略:EfficientViT,高效的视觉transformer与级联组注意力提升YoloV8的速度和精度,打造高效的YoloV8

YoloV8改进策略:LSKNet加入到YoloV8中,打造更适合小目标的YoloV8

YoloV8改进策略:RepViT改进YoloV8,轻量级的Block助力YoloV8实现更好的移动性

YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)

YoloV8改进策略:基于图的稀疏注意移动视觉的MobileViG,YoloV8用上了先进的图卷积网络

YoloV8改进策略:基于分层注意力的FasterViT,让YoloV8实现性能的飞跃

YoloV8改进策略:InceptionNext主干替换YoloV8和YoloV5的主干

YoloV8改进策略:轻量级的CloFormer助力Yolov8在速度和精度上实现双双提升

YoloV8改进策略:主干网络改进|SHViT高效视觉变换器(独家原创)

YoloV8改进策略:注意力改进|BackBone改进|自研全新的Mamba注意力|即插即用,简单易懂|附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:BackBone改进|GCNet(独家原创)|附结构图

💎💎💎数据增强篇💎💎💎

YoloV8数据处理:数据增强篇|图像旋转

💎💎💎Block改进篇💎💎💎

YoloV8改进策略:Block篇|FFA-Net:用于单图像去雾的特征融合注意力网络(独家原创)

YoloV8改进策略:Block篇|引入UIB模块,打造轻量级的YoloV8|多模块融合(独家原创)

YoloV8改进策略:Block改进|DCNv4最新实践|高效涨点|完整论文翻译

YoloV8改进策略:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:Block改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

YoloV8改进策略:Block改进|MogaNet——高效的多阶门控聚合网络

YoloV8改进策略:Block改进|自研Block,涨点超猛|代码详解|附结构图

YoloV8改进策略:Block改进|焦点调制网络(独家原创)

YoloV8改进策略:Block改进|2024年,遥感图像最新主干PKINet(独家改进,全网首发)

YoloV8改进策略:Block改进|轻量级的Mamba打造优秀的YoloV8|即插即用,简单易懂|附Block结构图|检测、分割、关键点均适用(独家原创)

YoloV8改进策略:Block改进|改进HCF-Net的MDCR模块|附结构图|多种改进方法(独家改进)

YoloV8改进策略:Block改进|HCF-Net的PPA模块|附结构图|(独家原创,全网首发)

YoloV8改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现YoloV8的有效涨点

YoloV8改进策略:SwiftFormer,全网首发,独家改进的高效加性注意力用于实时移动视觉应用的模型,重构YoloV8

YoloV8改进策略:EfficientViT,高效的视觉transformer与级联组注意力提升YoloV8的速度和精度,打造高效的YoloV8

YoloV8改进策略:LSKNet加入到YoloV8中,打造更适合小目标的YoloV8

YoloV8改进策略:RepViT改进YoloV8,轻量级的Block助力YoloV8实现更好的移动性

YoloV8改进策略:Diverse Branch Block改进YoloV8,继续在重参数结构上恐龙抗狼

YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)

YoloV8改进策略:基于分层注意力的FasterViT,让YoloV8实现性能的飞跃

YoloV8改进策略:InceptionNeXt和YoloV8完美结合,让YoloV8大放异彩

YoloV8改进策略:VanillaNet极简主义网络,大大降低YoloV8的参数

YoloV8改进策略:让SeaFormer走进Yolov8的视野,轻量高效的注意力模块展现出无与伦比的魅力

YoloV8改进策略:Conv2Former与YoloV8深度融合,极简网络,极高性能

YoloV8改进策略:将ConvNextV2与YoloV8激情碰撞,能迸发出什么样的火花呢

YoloV8改进策略:将CIoU替换成Wise-IoU,幸福涨点,值得拥有,还支持EIoU、GIoU、DIoU、SIoU无缝替换。

YoloV8改进策略:Block改进|PromptIR(NIPS‘2023)样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

YoloV8改进策略:Block改进|SHViT高效视觉变换器(独家原创)

💎💎💎Head改进篇💎💎💎

YoloV8改进策略:改进Head|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:注意力改进|Head改进|自研全新的Mamba注意力|即插即用,简单易懂:附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:Neck和Head改进|GCNet(独家原创)|附结构图

YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

💎💎💎多种方式融合改进篇💎💎💎

YoloV8改进策略:Neck层改进|BiFPN+小目标分支实现小目标检测精度的大幅度上升(独家原创)

💎💎💎上采样改进篇💎💎💎

YoloV8分割改进策略:上采样改进|动态上采样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

YoloV8改进策略:上采样改进|动态上采样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

💎💎💎下采样改进篇💎💎💎

YoloV8改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

YoloV8改进策略:下采样改进|HWD改进下采样

💎💎💎卷积篇💎💎💎

YoloV8改进策略:卷积篇|Kan行天下之FastKANConv

YoloV8改进策略:卷积篇|基于PConv的二次创新|附结构图|性能和精度得到大幅度提高(独家原创)

YoloV8改进策略:Conv改进|DCNv4最新实践|高效涨点|多种改进教程|完整论文翻译

YoloV8改进策略:Conv改进|TBC卷积,代码注释|多种改进方法|轻量又涨点|即插即用

YoloV8改进策略:卷积改进|MogaNet——高效的多阶门控聚合网络

YoloV8改进策略:卷积改进|RefConv打造轻量化YoloV8利器

YoloV8改进策略:卷积改进|DOConv轻量卷积,即插即用|适用各种场景

YoloV8改进策略:UniRepLKNet,大核卷积的最新成果,轻量高效的首选(全网首发)

YoloV8改进策略:AKConv即插即用,轻松涨点

YoloV8改进策略:WaveletPool解决小目标的混叠问题,提高小目标的检测精度

YoloV8改进策略:动态蛇形卷积,解决管状结构问题

YoloV8改进策略:RefConv打造轻量化YoloV8利器

YoloV8改进策略:独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验结果

YoloV8改进策略:可变形大核注意力D-LKA,YoloV8的超大杯酱香拿铁

YoloV8改进策略:Intel面向参数高效动态卷积KernelWarehouse,YoloV8的上分显眼包

YoloV8改进策略:CoordConv给卷积加上坐标,从而使其具备了空间感知能力

YoloV8改进策略:SPD-Conv加入到YoloV8中,让小目标无处遁形

YoloV8改进策略:即插即用的SCConv,YoloV8的轻量化涨点神器

YoloV8改进策略:Intel的多维动态卷积,涨点更轻松

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:InceptionNeXt和YoloV8完美结合,让YoloV8大放异彩

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:将DCN v1与v2运用到YoloV8中,化身成上分小黑子

YoloV8改进策略:卷积篇|使用PConv替换YoloV8中的卷积|即插即用,简单高效

💎💎💎蒸馏篇💎💎💎

YoloV8改进策略:蒸馏改进|MGDLoss|使用蒸馏模型实现YoloV8无损涨点|特征蒸馏

YoloV8改进策略:蒸馏改进|CWDLoss|使用蒸馏模型实现YoloV8无损涨点|特征蒸馏

YoloV8改进策略:蒸馏改进|MimicLoss|使用蒸馏模型实现YoloV8无损涨点|特征蒸馏

💎💎💎自研篇💎💎💎

YoloV8改进策略:改进Head|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:Block改进|自研Block,涨点超猛|代码详解|附结构图

YoloV8改进策略:改进BackBone|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:基于自研的图注意力机制改进| 独家改进方法|图卷积和注意力融合模块

YoloV8改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

💎💎💎注意力篇💎💎💎

YoloV8改进策略:注意力篇|BackBone改进|自研像素和通道并行注意力模块(独家原创)

YoloV8改进策略:注意力篇|像素注意力和通道注意力相融合,改进Bottleneck(独家原创)

YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:注意力改进|基于Tied的SE注意力,代码注释:多种改进方法|轻量又涨点|即插即用

YoloV8改进策略:注意力改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

YoloV8改进策略:BackBone改进|ECA-Net:用于深度卷积神经网络的高效通道注意力

YoloV8改进策略:Neck和Head改进|ECA-Net:用于深度卷积神经网络的高效通道注意力|多种改进方法|附结构图

YoloV8改进策略:BackBone改进|GCNet(独家原创)|附结构图

YoloV8改进策略:注意力改进、Neck层改进|自研全新的Mamba注意力|即插即用,简单易懂|附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:注意力改进|Head改进|自研全新的Mamba注意力|即插即用,简单易懂:附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:全局注意力机制|注意力改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:Agent Attention|Softmax与线性注意力的融合研究|有效涨点|代码注释与改进|全网首发(唯一)

YoloV8改进策略:BAM瓶颈注意力模块|BAM详解以及代码注释|CBAM姊妹篇|有效涨点

YoloV8改进策略:基于自研的图注意力机制改进| 独家改进方法|图卷积和注意力融合模块

YoloV8改进策略:基于频域多轴表示学习模块|全网首发|高效涨点|代码注释详解

YoloV8改进策略:AAAI 2024 最新的轴向注意力| 即插即用,改进首选|全网首发,包含数据集和代码,开箱即用!

YoloV8改进策略:Swift Parameter-free Attention,无参注意力机制,超分模型的完美迁移

YoloV8改进策略:三元注意力,小参数大能力,即插即用,涨点自如

YoloV8改进策略:OrthoNets最新的SOTA注意力机制,让YoloV8涨点自如

YoloV8改进策略:聚焦线性注意力重构YoloV8

YoloV8改进策略:重新思考高效的基于注意力的移动块模型EMO重新定义了轻量化的YoloV8

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:新出炉的EMA注意力机制助力YoloV8更加强大

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:基于双层路由注意力的视觉Transformer提升YoloV8的检测能力

YoloV8改进策略:注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

💎💎💎正则化改进💎💎💎

YoloV8改进策略:BN和LN的自适应结合的BCN| 正则化改进|有效涨点|代码二次改进,加注释详解

💎💎💎损失函数篇💎💎💎

YoloV8改进策略:IoU改进|Iou Loss最新实践|高效涨点|完整论文翻译

YoloV8改进策略:Shape-IoU,考虑边框形状与尺度的度量

YoloV8改进策略:Inner-IoU+clou,YoloV8的涨点明珠

YoloV8改进策略:NWD小目标检测新范式,助力YoloV5、V8在小目标上暴力涨点

YoloV8改进策略:MPDIoU超越现有的IoU,与YoloV8一起恐龙扛狼扛狼扛

💎💎💎复现论文💎💎💎

YoloV8改进策略:独家原创,全网首发,复现Drone-Yolo,以及改进方法

YoloV8改进策略:复现HIC-YOLOv5,打造HIC-YOLOv8,用于小物体检测

💎💎💎优化器💎💎💎

YoloV8改进策略:来自谷歌最新的优化器——Lion,在速度和精度上双双提升。Adam表示年轻人不讲武德

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1879524.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker Compose 入门

想象一下在服务器上运行静态页面的场景。对于这项任务&#xff0c;NGINX 服务器是一个不错的选择。我们在 static-site/index.html 路径下有一个简单的 HTML 文件&#xff1a; 通过使用 Docker&#xff0c;我们将使用以下官方镜像运行 NGINX 服务器 docker run --rm -p 8080:…

C++ 之插件机制初试

C 之插件机制 C 插件架构允许一个应用程序以动态链接库&#xff08;DLLs 在 Windows&#xff0c;或 .so 在 Unix-like 系统&#xff09;的形式加载和使用插件。以下是构建 C 插件架构的一般步骤和考虑因素&#xff1a; 定义插件接口 首先&#xff0c;定义一个插件接口&#…

R包的4种安装方式及常见问题解决方法

R包的4种安装方式及常见问题解决方法 R包的四种安装方式1. install.packages()2. 从Bioconductor安装3. 从本地源码安装4. 从github安装 常见问题的解决1. 版本问题2. 网络/镜像问题3.缺少Rtools R包的四种安装方式 1. install.packages() 对于R自带的包的安装一般都可以通过…

LeetCode热题100刷题2:283. 移动零、11. 盛最多水的容器、15. 三数之和、42. 接雨水

283. 移动零 挺简单的没啥说的 class Solution { public:void moveZeroes(vector<int>& nums) {//快慢指针 // 快指针负责往前遍历&#xff0c;慢指针记录快指针遍历过的把0撵走的最后一个元素的位置// 然后快指针遍历完之后&#xff0c;慢指针到结尾直接赋0就行in…

Python逻辑控制语句 之 判断语句--if语句的基本结构

1.程序执行的三大流程 顺序 分支&#xff08;判断&#xff09; 循环 2.if 语句的介绍 单独的 if 语句,就是 “如果 条件成⽴,做什么事” 3.if 语句的语法 if 判断条件: 判断条件成立&#xff0c;执行的代码…

PyCharm 2024.1 版本更新亮点:智能编程,高效协作

目录 1. 前言2. 更新内容2.1 智能编码体验2.1.1 Hugging Face 文档预览2.1.2 全行代码补全 2.2 提升编辑器体验2.2.1 粘性行功能2.2.2 编辑器内代码审查 2.3 全新终端体验&#xff08;测试版&#xff09;2.3.1 新终端 Beta 2.4 智能助手&#xff08;特定版本和专业用户&#xf…

操作符详解(下) (C语言)

操作符详解下 操作符的属性1.优先级2.结合级 表达式求值1.整型提升2.如何进行整形提升呢&#xff1f;3.算术转换4.问题表达式解析 操作符的属性 C语言的操作符有2个重要的属性&#xff1a;优先级、结合性&#xff0c;这两个属性决定了表达式求值的计算顺序。 1.优先级 优先级…

MSPM0G3507——定时器例程讲解4——timx_timer_mode_periodic

以下示例以周期模式配置TimerG并切换LED。周期从500ms开始&#xff0c;每次切换减少50ms&#xff0c;直到周期为100ms&#xff0c;然后重复。设备在等待中断时保持待机模式 #include "ti_msp_dl_config.h"/* ((32KHz / (321)) * 0.5s) 45 - 1 495 due to N1 ticks …

时间复杂度计算

要求算法的时间复杂度时&#xff0c;我们可以分析给定表达式 的阶。让我们来逐步分析&#xff1a; 分析阶的定义&#xff1a; 当我们说一个表达式的时间复杂度是 ( O(g(n)) )&#xff0c;我们指的是当 ( n ) 趋近无穷大时&#xff0c;表达式的增长率与 ( g(n) ) 的增长率相似。…

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验11 IP数据报的发送和转发流程

一、实验目的 1.观察IP数据报的发送和转发流程&#xff1b; 二、实验要求 1.使用Cisco Packet Tracer仿真平台&#xff1b; 2.观看B站湖科大教书匠仿真实验视频&#xff0c;完成对应实验。 三、实验内容 1.构建网络拓扑&#xff1b; 2.观察主机发送IP数据报的过程 3.观察路…

pytest-命令行参数

命令行参数 使用 Pytest 执行用例时&#xff0c;我们经常都是通过命令行来执行的&#xff0c;有同学要说了&#xff0c;我一般是通过编辑器里面直接就执行了&#xff1b;在实际项目中编写用例调试用例&#xff0c;使用编辑器执行用例没问题&#xff0c;但在 CI 集成环境下&…

中霖教育:二级建造师能同时报名参加多个省份的考试吗?

【中霖教育口碑】【中霖教育好吗】 二级建造师考试能同时报名参加多个省份吗?原则上是可以的。 二级建造师的报名过程需满足各省份设定的特定标准&#xff0c;申请者需提供相应省份注册的工程建设企业的工作年限证明&#xff0c;并在报名表上加盖章以证明企业身份。 部分省…

【电源专题】为什么带电量计芯片的电池MOS保护要放在高侧

在实际的电量计电池开发中,发现一个很奇怪的现象。传统电池保护IC往往都是将充电保护和放电保护的两个MOS管放在低侧的。如下所示是文章:【电源专题】读一读单节锂电池保护IC规格书 可以看到M1和M2两个MOS管是放在PB-(也就是电池的负端),我们叫做低端。 而BQ28Z610电…

LC437.路径总和Ⅲ、LC207.课程表

给定一个二叉树的根节点 root &#xff0c;和一个整数 targetSum &#xff0c;求该二叉树里节点值之和等于 targetSum 的 路径 的数目。 路径 不需要从根节点开始&#xff0c;也不需要在叶子节点结束&#xff0c;但是路径方向必须是向下的&#xff08;只能从父节点到子节点&am…

【小沐学AI】Python实现语音识别(whisperX)

文章目录 1、简介1.1 whisper1.2 whisperX 2、安装2.1 安装cuda2.2 安装whisperX 结语 1、简介 1.1 whisper https://arxiv.org/pdf/2212.04356 https://github.com/openai/whisper Whisper 是一种通用语音识别模型。它是在各种音频的大型数据集上训练的&#xff0c;也是一个…

打开防火墙设置提示需要使用新应用以打开此windowsdefender

拿到一台新电脑&#xff0c;装好虚拟机。主机ping虚拟机正常&#xff0c;虚拟机上网也正常&#xff0c;但是虚拟机ping主机ping不通。根据我多年虚拟机使用经验&#xff0c;这显然是因为主机防火墙没关。但是当我准备关闭主机防火墙的时候&#xff0c;发现防火墙设置打不开。界…

rtthread stm32h743的使用(十二)spi设备fal驱动的使用

我们要在rtthread studio 开发环境中建立stm32h743xih6芯片的工程。我们使用一块stm32h743及fpga的核心板完成相关实验&#xff0c;核心板如图&#xff1a; fal驱动的使用是建立在sfud驱动之上的&#xff0c;所以我们在上一节使用的工程基础上继续实验。 1.在上一节工程的基础…

互联网大厂核心知识总结PDF资料

我们要敢于追求卓越&#xff0c;也能承认自己平庸&#xff0c;不要低估3&#xff0c;5&#xff0c;10年沉淀的威力 hi 大家好&#xff0c;我是大师兄&#xff0c;大厂工作特点是需要多方面的知识和技能。这种学习和积累一般人需要一段的时间&#xff0c;不太可能一蹴而就&…

Swift宏的实现

上篇介绍了Swift宏的定义与生声明&#xff0c;本篇主要看看是Swift宏的具体实现。结合Swift中Codable协议&#xff0c;封装一个工具让类或者结构体自动实现Codable协议&#xff0c;并且添加一些协议中没有的功能。 关于Codable协议 Codable很好&#xff0c;但是有一些缺陷&…

Cherno 游戏引擎笔记 (45~60)

有几个部分的笔记以图片形式呈现&#xff08;如果没找到文本可以查看是否遗漏了图片笔记&#xff09; My Github REPO(GitHub - JJJJJJJustin/Nut: The game_engine which learned from Cherno) 源码笔记&#xff0c;希望帮到你 :-} ---Shader Library&#xff08;着色器库&…