【摄像头标定】双目摄像头标定及矫正-opencv(python)

news2024/11/24 3:06:24

双目摄像头标定及矫正

    • 棋盘格标定板
    • 标定
    • 矫正

棋盘格标定板

本文使用棋盘格标定板,可以到这篇博客中下载:https://blog.csdn.net/qq_39330520/article/details/107864568
在这里插入图片描述

标定

要进行标定首先需要双目拍的棋盘格图片,20张左右,由于本文的双目摄像头嵌入在开发板底板中,并且使用的是ros进行开发,所以对于大部分人拍照这里是没有参考价值的,对于也是使用ros开发的小伙伴,需要写一个节点发布双目摄像头的图像数据,然后再写一个节点订阅双目摄像头数据进行拍照保存。本文重点也不在拍照,对于其他小伙伴可以直接搜索一些适用的拍照方法,只要能获得到图片即可。
左摄像头图片如下:
在这里插入图片描述
右摄像头图片如下:
在这里插入图片描述
由于摄像头底层代码有问题,所以图像很暗,但不影响标定。
标定代码如下:

import cv2
import os
import numpy as np
import itertools
import yaml

# 定义文件夹路径
left_folder = "C:/new_pycharm_project/yolov10-main/shuangmu_left_pic"
right_folder = "C:/new_pycharm_project/yolov10-main/shuangmu_right_pic"

# 获取图像文件列表并排序
left_images = sorted(os.listdir(left_folder))
right_images = sorted(os.listdir(right_folder))

# 确保左右相机图像数量一致
assert len(left_images) == len(right_images), "左右相机图像数量不一致"

# 加载两个摄像头图片文件夹并将里面的彩图转换为灰度图
def load_images(folder, images):
    img_list = []
    for img_name in images:
        img_path = os.path.join(folder, img_name)
        frame = cv2.imread(img_path)
        if frame is not None:
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            img_list.append((frame, gray))
        else:
            print(f"无法读取图像: {img_path}")
    return img_list



# 检测棋盘格角点
def get_corners(imgs, pattern_size):
    corners = []
    for frame, gray in imgs:
        ret, c = cv2.findChessboardCorners(gray, pattern_size)     #ret 表示是否成功找到棋盘格角点,c 是一个数组,包含了检测到的角点的坐标
        if not ret:
            print("未能检测到棋盘格角点")
            continue
        c = cv2.cornerSubPix(gray, c, (5, 5), (-1, -1),
                             (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))     #cv2.cornerSubPix 函数用于提高棋盘格角点的精确度,对初始检测到的角点坐标 c 进行优化
        corners.append(c)      #将优化后的角点坐标 c 添加到 corners 列表中

        # 绘制角点并显示
        vis = frame.copy()
        cv2.drawChessboardCorners(vis, pattern_size, c, ret)
        new_size = (1280, 800)
        resized_img = cv2.resize(vis, new_size)
        cv2.imshow('Corners', resized_img)
        cv2.waitKey(150)

    return corners

# 相机标定
def calibrate_camera(object_points, corners, imgsize):
    cm_input = np.eye(3, dtype=np.float32)
    ret = cv2.calibrateCamera(object_points, corners, imgsize, cm_input, None)
    return ret

def save_calibration_to_yaml(file_path, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T, E, F):
    data = {
        'camera_matrix_left': {
            'rows': 3,
            'cols': 3,
            'dt': 'd',
            'data': cameraMatrix_l.flatten().tolist()
        },
        'dist_coeff_left': {
            'rows': 1,
            'cols': 5,
            'dt': 'd',
            'data': distCoeffs_l.flatten().tolist()
        },
        'camera_matrix_right': {
            'rows': 3,
            'cols': 3,
            'dt': 'd',
            'data': cameraMatrix_r.flatten().tolist()
        },
        'dist_coeff_right': {
            'rows': 1,
            'cols': 5,
            'dt': 'd',
            'data': distCoeffs_r.flatten().tolist()
        },
        'R': {
            'rows': 3,
            'cols': 3,
            'dt': 'd',
            'data': R.flatten().tolist()
        },
        'T': {
            'rows': 3,
            'cols': 1,
            'dt': 'd',
            'data': T.flatten().tolist()
        },
        'E': {
            'rows': 3,
            'cols': 3,
            'dt': 'd',
            'data': E.flatten().tolist()
        },
        'F': {
            'rows': 3,
            'cols': 3,
            'dt': 'd',
            'data': F.flatten().tolist()
        }
    }

    with open(file_path, 'w') as file:
        yaml.dump(data, file, default_flow_style=False)
    print(f"Calibration parameters saved to {file_path}")



img_left = load_images(left_folder, left_images)      #img_left是个列表,存放左摄像头所有的灰度图片。
img_right = load_images(right_folder, right_images)
pattern_size = (8, 5)
corners_left = get_corners(img_left, pattern_size)       #corners_left的长度表示检测到棋盘格角点的图像数量。corners_left[i] 和 corners_right[i] 中存储了第 i 张图像检测到的棋盘格角点的二维坐标。
corners_right = get_corners(img_right, pattern_size)
cv2.destroyAllWindows()

# 断言,确保所有图像都检测到角点
assert len(corners_left) == len(img_left), "有图像未检测到左相机的角点"
assert len(corners_right) == len(img_right), "有图像未检测到右相机的角点"

# 准备标定所需数据
points = np.zeros((8 * 5, 3), dtype=np.float32)   #创建40 行 3 列的零矩阵,用于存储棋盘格的三维坐标点。棋盘格的大小是 8 行 5 列,40 个角点。数据类型为 np.float32,这是一张图的,因为一个角点对应一个三维坐标
points[:, :2] = np.mgrid[0:8, 0:5].T.reshape(-1, 2) * 21  #给这些点赋予实际的物理坐标,* 21 是因为每个棋盘格的大小为 21mm

object_points = [points] * len(corners_left)     #包含了所有图像中棋盘格的三维物理坐标点 points。这里假设所有图像中棋盘格的物理坐标是相同的,因此用 points 复制 len(corners_left) 次。
imgsize = img_left[0][1].shape[::-1]     #img_left[0] 是左相机图像列表中的第一张图像。img_left[0][1] 是该图像的灰度图像。shape[::-1] 取灰度图像的宽度和高度,并反转顺序,以符合 calibrateCamera 函数的要求。

print('开始左相机标定')
ret_l = calibrate_camera(object_points, corners_left, imgsize)    #object_points表示标定板上检测到的棋盘格角点的三维坐标;corners_left[i]表示棋盘格角点在图像中的二维坐标;imgsize表示图像大小
retval_l, cameraMatrix_l, distCoeffs_l, rvecs_l, tvecs_l = ret_l[:5]    #返回值里就包含了标定的参数

print('开始右相机标定')
ret_r = calibrate_camera(object_points, corners_right, imgsize)
retval_r, cameraMatrix_r, distCoeffs_r, rvecs_r, tvecs_r = ret_r[:5]

# 立体标定,得到左右相机的外参:旋转矩阵、平移矩阵、本质矩阵、基本矩阵
print('开始立体标定')
criteria_stereo = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-5)
ret_stereo = cv2.stereoCalibrate(object_points, corners_left, corners_right,
                                 cameraMatrix_l, distCoeffs_l,
                                 cameraMatrix_r, distCoeffs_r,
                                 imgsize, criteria=criteria_stereo,
                                 flags=cv2.CALIB_FIX_INTRINSIC)
ret, _, _, _, _, R, T, E, F = ret_stereo

# 输出结果
print("左相机内参:\n", cameraMatrix_l)
print("左相机畸变系数:\n", distCoeffs_l)
print("右相机内参:\n", cameraMatrix_r)
print("右相机畸变系数:\n", distCoeffs_r)
print("旋转矩阵 R:\n", R)
print("平移向量 T:\n", T)
print("本质矩阵 E:\n", E)
print("基本矩阵 F:\n", F)
print("标定完成")

# 保存标定结果
save_calibration_to_yaml('calibration_parameters.yaml', cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T, E, F)


# 计算重投影误差
def compute_reprojection_errors(objpoints, imgpoints, rvecs, tvecs, mtx, dist):
    total_error = 0
    total_points = 0
    for i in range(len(objpoints)):
        imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
        error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
        total_error += error
        total_points += len(imgpoints2)
    mean_error = total_error / total_points
    return mean_error

# 计算并打印左相机和右相机的重投影误差
print("左相机重投影误差: ", compute_reprojection_errors(object_points, corners_left, rvecs_l, tvecs_l, cameraMatrix_l, distCoeffs_l))
print("右相机重投影误差: ", compute_reprojection_errors(object_points, corners_right, rvecs_r, tvecs_r, cameraMatrix_r, distCoeffs_r))

# 立体矫正和显示
def stereo_rectify_and_display(img_l, img_r, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T):
    img_size = img_l.shape[:2][::-1]

    # 立体校正
    R1, R2, P1, P2, Q, _, _ = cv2.stereoRectify(cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, img_size, R, T)
    map1x, map1y = cv2.initUndistortRectifyMap(cameraMatrix_l, distCoeffs_l, R1, P1, img_size, cv2.CV_32FC1)
    map2x, map2y = cv2.initUndistortRectifyMap(cameraMatrix_r, distCoeffs_r, R2, P2, img_size, cv2.CV_32FC1)

    # 图像矫正
    rectified_img_l = cv2.remap(img_l, map1x, map1y, cv2.INTER_LINEAR)
    rectified_img_r = cv2.remap(img_r, map2x, map2y, cv2.INTER_LINEAR)

    # 显示矫正后的图像
    combined_img = np.hstack((rectified_img_l, rectified_img_r))
    cv2.imshow('Rectified Images', combined_img)
    cv2.imwrite("stereo_jiaozheng.png",combined_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 加载并矫正示例图像
example_idx = 0
img_l = img_left[example_idx][0]
img_r = img_right[example_idx][0]
stereo_rectify_and_display(img_l, img_r, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T)

标定完成后会显示一张矫正后的图像。代码重要的地方都给出了注释,主要流程就是分别对左右相机进行标定,然后对两个相机进行联合标定(立体标定),最后得到的参数会保存到yaml文件中:

---
camera_matrix_left:
  rows: 3
  cols: 3
  dt: d
  data:
    - 531.7200210313852
    - 0
    - 642.0170539101581
    - 0
    - 533.6471323984354
    - 420.4033045027399
    - 0
    - 0
    - 1
dist_coeff_left:
  rows: 1
  cols: 5
  dt: d
  data:
    - -0.1670007968198256
    - 0.04560028196221921
    - 0.0011938487550718078
    - -0.000866537907860316
    - -0.00805042100882671
camera_matrix_right:
  rows: 3
  cols: 3
  dt: d
  data:
    - 525.9058345430292
    - 0
    - 628.7761214904813
    - 0
    - 528.2078922687268
    - 381.8575789135264
    - 0
    - 0
    - 1
dist_coeff_right:
  rows: 1
  cols: 5
  dt: d
  data:
    - -0.15320688387351564
    - 0.03439886104586617
    - -0.0003732170677440928
    - -0.0024909528446780153
    - -0.005138400994014348
R:
  rows: 3
  cols: 3
  dt: d
  data:
    - 0.9999847004116569
    - -0.00041406631566505544
    - 0.005516112008926496
    - 0.0003183979929468572
    - 0.9998497209492369
    - 0.017333036100216304
    - -0.005522460079247196
    - -0.017331014592906722
    - 0.9998345554979852
T:
  rows: 3
  cols: 1
  dt: d
  data:
    - -55.849260376265015
    - 2.1715925432988743
    - 0.46949841441903933
E:
  rows: 3
  cols: 3
  dt: d
  data:
    - -0.012142020481601675
    - -0.5070637607007459
    - 2.1630954322858496
    - 0.1610659204031652
    - -0.9681187500627653
    - 55.84261022903612
    - -2.189341611238282
    - -55.83996821910631
    - -0.9800159939787676
F:
  rows: 3
  cols: 3
  dt: d
  data:
    - -2.4239149875305048e-8
    - -0.0000010085973649868748
    - 0.0027356495714066175
    - 3.2013501988129346e-7
    - -0.0000019172863951399893
    - 0.05961765359743852
    - -0.002405523166325036
    - -0.057046539240958545
    - 1

分别是左相机的内参矩阵、畸变系数,右相机的内参矩阵和畸变系数,两个相机之间的旋转矩阵、平移矩阵、本质矩阵、基本矩阵。

矫正

import cv2
import yaml
import numpy as np

# 定义函数读取标定数据
def read_calibration_data(calibration_file):
    with open(calibration_file, 'r') as f:
        calib_data = yaml.safe_load(f)
        cameraMatrix_l = np.array(calib_data['camera_matrix_left']['data']).reshape(3, 3)
        distCoeffs_l = np.array(calib_data['dist_coeff_left']['data'])
        cameraMatrix_r = np.array(calib_data['camera_matrix_right']['data']).reshape(3, 3)
        distCoeffs_r = np.array(calib_data['dist_coeff_right']['data'])
        R = np.array(calib_data['R']['data']).reshape(3, 3)
        T = np.array(calib_data['T']['data']).reshape(3, 1)
    return cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T

# 定义函数对图像进行矫正
def rectify_images(left_image_path, right_image_path, calibration_file):
    # 读取标定数据
    cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T = read_calibration_data(calibration_file)

    # 读取左右图像
    img_left = cv2.imread(left_image_path)
    img_right = cv2.imread(right_image_path)

    # 获取图像尺寸(假设左右图像尺寸相同)
    img_size = img_left.shape[:2][::-1]

    # 立体校正
    R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(cameraMatrix_l, distCoeffs_l,
                                                     cameraMatrix_r, distCoeffs_r,
                                                     img_size, R, T)

    # 计算映射参数
    map1_l, map2_l = cv2.initUndistortRectifyMap(cameraMatrix_l, distCoeffs_l, R1, P1, img_size, cv2.CV_32FC1)
    map1_r, map2_r = cv2.initUndistortRectifyMap(cameraMatrix_r, distCoeffs_r, R2, P2, img_size, cv2.CV_32FC1)

    # 应用映射并显示结果
    rectified_img_l = cv2.remap(img_left, map1_l, map2_l, cv2.INTER_LINEAR)
    rectified_img_r = cv2.remap(img_right, map1_r, map2_r, cv2.INTER_LINEAR)

    # 合并图像显示
    combined_img = np.hstack((rectified_img_l, rectified_img_r))
    cv2.imshow('Rectified Images', combined_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 设置路径和文件名
left_image_path = "C:/new_pycharm_project/yolov10-main/shuangmu_left_pic/left_image0.png"
right_image_path = "C:/new_pycharm_project/yolov10-main/shuangmu_right_pic/right_image0.png"
calibration_file = "C:/new_pycharm_project/yolov10-main/calibration_parameters.yaml"

# 调用函数进行图像矫正
rectify_images(left_image_path, right_image_path, calibration_file)

结果对比:
在这里插入图片描述
在这里插入图片描述
第一张是矫正前的左右相机图像,第二张是矫正后的。可以看到去除了畸变,并且两图像基本出于同一水平线。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1877696.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【最简单】解决windows安装wsl,出现WslRegisterDistribution failed with error: 0x8007019e的问题

从官网下载安装包安装ubuntu18.04的过程中出现了下面的错误 在Windows上安装Windows Subsystem for Linux (WSL) 时,可能会遇到以下错误: WslRegisterDistribution failed with error: 0x8007019e 这个错误通常是由于系统未启用必要的功能或未正确配置…

计算机网络微课堂(湖科大教书匠)TCP部分

计算机网络微课堂(湖科大教书匠)TCP部分 【计算机网络微课堂(有字幕无背景音乐版)】 TCP的流量控制 一般来说,我们希望数据传输得更快一些。但如果发送方把数据发送得过快,接收方就可能来不及接收&#…

【Vue】Vue3基础

VUE3基础 1、简介2、创建工程2.1 基于vue-cli创建(脚手架webpack)2.2 基于vite创建(推荐)2.3 目录结构2.4 vscode插件推荐 3、核心语法3.1 选项式(options API)和组合式(composition API&#x…

json文件 增删查改

默认收藏夹 qt操作json格式文件... 这个人的 写的很好 我的demo全是抄他的 抄了就能用 —————————— 下次有空把我的demo 传上来 在E盘的demo文件夹 json什么名字

「ETL趋势」FDL数据开发支持版本管理、实时管道支持多对一、数据源新增支持神通

FineDataLink作为一款市场上的顶尖ETL工具,集实时数据同步、ELT/ETL数据处理、数据服务和系统管理于一体的数据集成工具,进行了新的维护迭代。本文把FDL4.1.8最新功能作了介绍,方便大家对比:(产品更新详情:…

Profinet IO从站数据 转EtherCAT项目案例

这里是引用 目录 1 案例说明 1 2 VFBOX网关工作原理 1 3 准备工作 2 4 使用PRONETA软件获取PROFINET IO从站的配置信息 2 5 设置网关采集PROFINETIO从站设备数据 5 6 启动ETHERCAT从站转发采集的数据 8 7 选择槽号和数据地址 9 8 选择子槽号 11 9 案例总结 12 1 案例说明 设置…

《昇思25天学习打卡营第12天 | 昇思MindSpore基于MindSpore的GPT2文本摘要》

12天 本节学习了基于MindSpore的GPT2文本摘要。 1.数据集加载与处理 1.1.数据集加载 1.2.数据预处理 2.模型构建 2.1构建GPT2ForSummarization模型 2.2动态学习率 3.模型训练 4.模型推理

揭秘Etched AI:三个哈佛辍学00后挑战英伟达,推出Transformer专用ASIC芯片sohu

人工智能领域最近掀起了一股新的热潮,三位哈佛辍学的00后本科生创建了Etched AI,并成功推出了一款超强AI芯片sohu,直指英伟达的AI芯片帝国。这款芯片被誉为比英伟达H100快20倍,吸引了众多科技界的关注。本文将深入探讨Etched AI及…

五、Spring IoCDI ★ ✔

5. Spring IoC&DI 1. IoC & DI ⼊⻔1.1 Spring 是什么?★ (Spring 是包含了众多⼯具⽅法的 IoC 容器)1.1.1 什么是容器?1.1.2 什么是 IoC?★ (IoC: Inversion of Control (控制反转))总…

带上作弊器,我不得起飞

前言 过去,我们对人工智能既期待又害怕.人类的惰性希望人工智能可以帮助大家从大部分繁重的工作中解放出来,但又害怕它失控. 智能系统的好处 工作方面 自动化与效率提升:可以自动执行许多重复性和低技能的任务,如制造业中的装配、数据输入和办公室的客户…

java的序列化和反序列化

一、概念 序列化是将对象的常态存储到特定的存储介质中的过程。 反序列化是将特定的存储介质中的数据重新构建对象的过程。 问题 为每个对象属性——编写读写代码,过程很繁琐且非常容易出错,如何解决? 二、使用Object Output Stream类实现…

敏捷开发笔记(第9章节)--开放-封闭原则(OCP)

目录 1:PDF上传链接 9.1 开放-封闭原则(OCP) 9.2 描述 9.3 关键是抽象 9.3.1 shape应用程序 9.3.2 违反OCP 糟糕的设计 9.3.3 遵循OCP 9.3.4 是的,我说谎了 9.3.5 预测变化和“贴切的”结构 9.3.6 放置吊钩 1.只受一次…

Spring专题一:源码编译

下载源码 因为公司使用的是Spring5.2.x所以就下载了这个版本,github源码地址如下: GitHub - spring-projects/spring-framework at v5.2.6.RELEASE: 如果网络不稳定可以使用下载压缩版即可,网络稳定的话还是建议使用git clone …

C语言的数据结构:树与二叉树(哈夫曼树篇)

前言 上篇讲完了二叉树,二叉树的查找性能要比树好很多,如平衡二叉树保证左右两边节点层级相差不会大于1,其查找的时间复杂度仅为 l o g 2 n log_2n log2​n,在两边层级相同时,其查找速度接近于二分查找。1w条数据&am…

今日AI提示词|新媒体运营场景-小红薯笔记通用指令

指令写作的技巧与步骤 明确定义需求 提供足够的上下文 使用简单直白的语言 举例说明 添加限制条件 多次迭代优化,给出详细的要求 小红薯笔记通用指令 从现在开始,你担任我的小红书创作者。你的任务是根据我提供给你的主体,撰写一篇小…

运维锅总详解HAProxy

本文尝试从HAProxy简介、HAProxy工作流程及其与Nginx的对比对其进行详细分析;在本文最后,给出了为什么Nginx比HAProxy更受欢迎的原因。希望对您有所帮助! HAProxy简介 HAProxy(High Availability Proxy)是一款广泛使…

开源项目-商城管理系统

哈喽,大家好,今天主要给大家带来一个开源项目-商城管理系统 商城管理系统分前后端两部分。前端主要有商品展示,我的订单,个人中心等内容;后端的主要功能包括产品管理,门店管理,会员管理,订单管理等模块 移动端页面

汽车电子工程师入门系列——AUTOSAR通信服务框架(上)

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

uniapp+vue3开发微信小程序踩坑集

本文主要记录使用uniappvue3开发微信小程序遇见的各种常见问题及注意点。(持续更新) 问题: 自定义组件为什么有些样式加不上去 给自定义组件增加class的时候,有时候不生效有时候生效,一度让我怀疑自己记忆错乱。后来…

实验 1 图像基本操作

1. 实验目的 ①熟悉 Photoshop 基本操作; ②掌握 Matlab 、PythonOpenCV 中处理图像的基本方法; ③掌握图像的半调转换和抖动转换。 2. 实验内容 ①Photoshop 基本操作:打开图像文件,选择区域,旋转、裁剪图像、图层…