本文将介绍一个称为GlobalPointer的设计,它利用全局归一化的思路来进行命名实体识别(NER),可以无差别地识别嵌套实体和非嵌套实体,在非嵌套(Flat NER)的情形下它能取得媲美CRF的效果,而在嵌套(Nested NER)情形它也有不错的效果。还有,在理论上,GlobalPointer的设计思想就比CRF更合理;而在实践上,它训练的时候不需要像CRF那样递归计算分母,预测的时候也不需要动态规划,是完全并行的,理想情况下时间复杂度是O(1)
GlobalPointer
常规的Pointer Network的设计在做实体识别或者阅读理解时,一般是用两个模块分别识别实体的首和尾,这会带来训练和预测时的不一致。而GlobalPointer就是针对这个不一致而设计的**,它将首尾视为一个整体去进行判别**,所以它更有“全局观”(更Global)。
基本思路
数学形式
相对位置
优化细节
损失函数
评价指标
优化F1值
总结
慢慢的将该方法全部搞定,会自己编写代码框。