第100+13步 ChatGPT学习:R实现决策树分类

news2025/1/8 11:32:46

基于R 4.2.2版本演示

一、写在前面

有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。

答曰:可!用GPT或者Kimi转一下就得了呗。

加上最近也没啥内容写了,就帮各位搬运一下吧。

二、R代码实现决策树分类

(1)导入数据

我习惯用RStudio自带的导入功能:

(2)建立决策树模型(默认参数)

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)

# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)

# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]

# Convert the target variable to a factor for classification
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)

# Define control method for training with cross-validation
trainControl <- trainControl(method = "cv", number = 10)
# Fit Decision Tree model on the training set
model <- train(X ~ ., data = trainData, method = "rpart", trControl = trainControl)

# Print the best parameters found by the model
best_params <- model$bestTune
cat("The best parameters found are:\n")
print(best_params)


# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "prob")[,2]
validPredict <- predict(model, validData, type = "prob")[,2]

# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)

# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)

# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +
  geom_line(color = "blue") +
  geom_area(alpha = 0.2, fill = "blue") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
  ggtitle("Training ROC Curve") +
  xlab("False Positive Rate") +
  ylab("True Positive Rate") +
  annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")

ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +
  geom_line(color = "red") +
  geom_area(alpha = 0.2, fill = "red") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
  ggtitle("Validation ROC Curve") +
  xlab("False Positive Rate") +
  ylab("True Positive Rate") +
  annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")

# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)

# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {
  conf_mat_df <- as.data.frame(as.table(conf_mat))
  colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")
  
  p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +
    geom_tile(color = "white") +
    geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +
    scale_fill_gradient(low = "white", high = "steelblue") +
    labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))
  
  print(p)
}
# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")

# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]

a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]

# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc

# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc

# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")

cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

在R语言中,还是使用caret包来训练决策树模型,可以调整多种参数来优化模型的性能:

①cp (Complexity Parameter): 用来控制树的生长。cp 值越大,生成的模型越简单。如果 cp 设置得太高,可能导致模型欠拟合。

②maxdepth: 决定了树的最大深度。较深的树可以更好地捕捉数据中的复杂关系,但也可能导致过拟合。

③minsplit: 定义了节点在尝试分裂之前所需的最小样本数。增加这个值可以让树更加稳健,但也可能导致欠拟合。

④minbucket: 叶节点最少包含的样本数。这个参数可以帮助防止模型过于复杂,从而避免过拟合。

结果输出(默认参数):

在默认参数中,caret包只会默默帮我们找几个合适的cp值进行测试。其他三个参数就一个默认值。

三、决策树调参方法(仅cp值)

如前所述,决策树的关键参数就是有4个,但是caret包做网格搜索的话,只能提供对于cp值的遍历,其余三个不提供。

比如我设置cp值从0.001到0.1,步长是0.001;而maxdepth = 20, minsplit = 10, minbucket = 10:

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)
library(rpart)

# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)

# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]

# Convert the target variable to a factor for classification
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)

# 定义交叉验证控制方法
trainControl <- trainControl(method = "cv", number = 10)

# 定义参数网格,只包括 cp
tuneGrid <- expand.grid(cp = seq(0.001, 0.1, by = 0.001))

# 定义 rpart.control,固定其他参数
rpartControl <- rpart.control(maxdepth = 20, minsplit = 10, minbucket = 10)

# 使用 rpart 方法训练决策树模型
model <- train(X ~ ., data = trainData, method = "rpart", trControl = trainControl, tuneGrid = tuneGrid,
               control = rpartControl)

# 打印找到的最佳参数
best_params <- model$bestTune
cat("The best parameters found are:\n")
print(best_params)

# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "prob")[,2]
validPredict <- predict(model, validData, type = "prob")[,2]

# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)

# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)

# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +
  geom_line(color = "blue") +
  geom_area(alpha = 0.2, fill = "blue") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
  ggtitle("Training ROC Curve") +
  xlab("False Positive Rate") +
  ylab("True Positive Rate") +
  annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")

ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +
  geom_line(color = "red") +
  geom_area(alpha = 0.2, fill = "red") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
  ggtitle("Validation ROC Curve") +
  xlab("False Positive Rate") +
  ylab("True Positive Rate") +
  annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")

# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)

# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {
  conf_mat_df <- as.data.frame(as.table(conf_mat))
  colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")
  
  p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +
    geom_tile(color = "white") +
    geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +
    scale_fill_gradient(low = "white", high = "steelblue") +
    labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))
  
  print(p)
}
# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")

# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]

a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]

# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc

# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc

# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")

cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

结果输出:

似乎好了一点了,那么,如果我先把其余三个参数也纳入遍历呢?那只能用循环语句了。

四、决策树调参方法(4个值)

设置cp值从0.001到0.1,步长是0.001;maxdepth从10到30,步长是5;minsplit取值10、20、30、40;minbucket取值5、10、15、20:

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)
library(rpart)

# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)

# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]

# Convert the target variable to a factor for classification
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)

# 参数网格定义
cp_values <- seq(0.001, 0.01, by = 0.001)
maxdepth_values <- seq(10, 30, by = 5)
minsplit_values <- c(10, 20, 30, 40)
minbucket_values <- c(5, 10, 15, 20)

# 用于存储结果的列表
results <- list()

# 网格搜索实现
for (cp in cp_values) {
  for (maxdepth in maxdepth_values) {
    for (minsplit in minsplit_values) {
      for (minbucket in minbucket_values) {
        # 训练模型
        model <- rpart(X ~ ., data = trainData, 
                       control = rpart.control(cp = cp, maxdepth = maxdepth,
                                               minsplit = minsplit, minbucket = minbucket))
        # 预测验证集
        predictions <- predict(model, validData, type = "class")
        # 计算性能指标,这里使用准确度
        accuracy <- sum(predictions == validData$X) / nrow(validData)
        
        # 存储结果
        results[[length(results) + 1]] <- list(cp = cp, maxdepth = maxdepth, 
                                               minsplit = minsplit, minbucket = minbucket,
                                               accuracy = accuracy)
      }
    }
  }
}

# 找到最高准确度的模型参数
best_model <- results[[which.max(sapply(results, function(x) x$accuracy))]]
print(best_model)

# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "prob")[,2]
validPredict <- predict(model, validData, type = "prob")[,2]

# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)

# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)

# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +
  geom_line(color = "blue") +
  geom_area(alpha = 0.2, fill = "blue") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
  ggtitle("Training ROC Curve") +
  xlab("False Positive Rate") +
  ylab("True Positive Rate") +
  annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")

ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +
  geom_line(color = "red") +
  geom_area(alpha = 0.2, fill = "red") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
  ggtitle("Validation ROC Curve") +
  xlab("False Positive Rate") +
  ylab("True Positive Rate") +
  annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")

# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)

# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {
  conf_mat_df <- as.data.frame(as.table(conf_mat))
  colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")
  
  p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +
    geom_tile(color = "white") +
    geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +
    scale_fill_gradient(low = "white", high = "steelblue") +
    labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))
  
  print(p)
}
# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")

# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]

a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]

# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc

# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc

# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")

cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

结果输出:

以上是找到的相对最优参数组合,看看具体性能:

哈哈,又给调回去了,矫枉过正。思路就是这么个思路,大家自行食用了。

五、最后

看到这里,我觉得还是Python的sk-learn提供的调参简单些,至少不用写循环。

数据嘛:

链接:https://pan.baidu.com/s/1rEf6JZyzA1ia5exoq5OF7g?pwd=x8xm

提取码:x8xm

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1861341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

极客之夜 | XCTF国际网络攻防联赛十周年庆典圆满落幕

在数字化浪潮的推动下&#xff0c;网络安全已成为全球关注的焦点。十年磨一剑&#xff0c;XCTF国际网络攻防联赛以其卓越的赛事品质和深远的影响力&#xff0c;成为网络安全领域的一面旗帜。极客之夜&#xff0c;我们齐聚一堂&#xff0c;共同庆祝XCTF的十年辉煌&#xff0c;展…

andon系统及时通知对应处理人员,助力产线快速处理异常

在当今快节奏、高效率的制造业环境中&#xff0c;生产线的稳定运行和快速响应异常情况的能力对于企业的成功至关重要。Andon 系统作为一种先进的生产管理工具&#xff0c;凭借其及时通知对应处理人员的功能&#xff0c;为产线快速处理异常提供了强大的助力。 一、Andon系统组成…

基于springboot+Vue高校宿舍管理系统的设计与实现【附源码】

本科毕业设计&#xff08;论文&#xff09; 基于springbootVue高校宿舍管理系统的设计与实现 目录 摘要 2 第一章 绪论 2 1.1 开发背景 2 1.2 开发意义 2 第二章 系统分析 3 2.1 系统的需求分析 3 2.2 系统开发设计思想 3 2.3系统开发步骤 3 2.4 系统的主要技术 4 2.4.1 B/S系…

分享一个好用的图幅号计算器

如果在你的工作中会分幅处理地图数据&#xff0c;也许这个好用的图幅号计算器能对你有所帮助。 你只需要在该工具中输入经纬度坐标&#xff0c;就可以为你计算出各个比例尺下的图幅号&#xff0c;你可以在文末查看该工具的领取方法。 一个好用的图幅号计算器 该图幅计算器工…

3d渲染软件有哪些(1),渲染100邀请码1a12

3D渲染是把三维模型转成2D图像的过程&#xff0c;领域不同常用的软件也不一样&#xff0c;今天我们就简单介绍几个。 在介绍前我们先推荐一个设计人员常用到的工具&#xff0c;就是网渲平台渲染100&#xff0c;通过它设计师可以把本地渲染放到云端进行&#xff0c;价格也不贵&a…

全景vr交互微课视频开发让学习变得更加有趣、高效

在数字化教育的浪潮中&#xff0c;3D虚拟微课系统操作平台以其独特的魅力和创新的功能&#xff0c;成为吸引学生目光的焦点。这个平台不仅提供了引人入胜的画面和内容丰富的课件&#xff0c;更通过技术革新和制作方式的探索&#xff0c;将课程制作推向了一个全新的高度。 随着技…

基于流量特征DNS隐蔽信道分析方法总结

一、 概述 隐蔽信道是指允许进程以危害系统安全策略的方式传输倍息的通信通道。隐蔽信道在公开的信道掩盖下&#xff0c;采用特殊的编码方式&#xff0c;传输非法或私密的信息而不被人发现。其广泛存在于操作系统、网络系统和应用系统中。对网络信息系统的安全构成了严重威…

U盘数据恢复宝典:从原因到解决方案的全面指南

一、U盘数据恢复概述 在日常生活和工作中&#xff0c;U盘已成为我们不可或缺的数据存储工具。然而&#xff0c;随着数据量的不断增长和使用的频繁&#xff0c;U盘数据丢失的问题也日益突出。U盘数据恢复技术正是在这种背景下应运而生&#xff0c;它通过各种技术手段找回因误删…

妈耶!被夸爆的零售数据分析方案在这里

在竞争激烈的零售市场中&#xff0c;数据分析已成为企业决胜的关键。今天&#xff0c;就为大家揭秘一份备受赞誉的零售数据分析方案——奥威BI零售数据分析方案&#xff0c;它围绕“人、货、场、供、财”五大主题&#xff0c;助力企业精准决策&#xff0c;实现业务增长。 一、人…

从传统到智能:视频汇聚EasyCVR+AI视频监控如何助力仓储的智能化转型

随着物流行业的快速发展和市场竞争的加剧&#xff0c;仓储管理对于保证货物安全、提高运营效率显得尤为重要。传统的仓储监控方式已难以满足现代仓储管理的需求&#xff0c;因此&#xff0c;仓储视频智能监控解决方案应运而生。方案通过集成先进的视频监控技术、智能分析算法、…

【数据结构】栈的定义与实现(附完整运行代码)

目录 一、栈的定义 二、顺序栈 链栈比较 三、栈的实现&#xff08;顺序栈&#xff09; 3.1 ❥ 定义栈结构 3.2 ❥ 初始化 3.3 ❥ 销毁 3.4 ❥ 插入&#xff08;入栈&#xff09; 3.5 ❥ 删除 &#xff08;出栈&#xff09; 3.6 ❥ 获取栈顶元素 3.7 ❥ 判空 3.8 ❥…

Linux操作系统进程同步的几种方式及基本原理

1&#xff0c;进程同步的几种方式 1.1信号量 用于进程间传递信号的一个整数值。在信号量上只有三种操作可以进行&#xff1a;初始化&#xff0c;P操作和V操作&#xff0c;这三种操作都是原子操作。 P操作(递减操作)可以用于阻塞一个进程&#xff0c;V操作(增加操作)可以用于…

C++哈希表、哈希桶的实现以及模拟实现封装unordered_map 和 unordered_set 位图 布隆过滤器 哈希切割相关

文章目录 unordered系列关联式容器unordered_mapunordered_map的接口说明 unordered_setset 与 unordered_set的效率比较 底层结构哈希概念哈希冲突哈希函数常见哈希函数哈希冲突解决闭散列 —— 开放定址法哈希表的插入线性探测二次探测 哈希表的闭散列实现哈希表的结构插入代…

Redis报错:MISCONF Redis is configured to save RDB snapshots

错误提示内容&#xff1a; 2024-06-25 16:30:49 : Connection: Redis_Server > [runCommand] PING 2024-06-25 16:30:49 : Connection: Redis_Server > Response received : -MISCONF Redis is configured to save RDB snapshots, but it is currently not able to pers…

Java高级重点知识点-13-数据结构、List集合、List集合的子类

文章目录 数据结构List集合List的子类&#xff08;ArrayList集、LinkedList集&#xff09; 数据结构 栈 stack,又称堆栈&#xff0c;它是运算受限的线性表&#xff0c;其限制是仅允许在标的一端进行插入和删除操作&#xff0c;不允许在其他任何位置进行添加、查找、删除等操作…

Verilog描述一个带有异步置位和异步清零的D触发器

1 带有异步置位和异步清零的D触发器的真值表&#xff1a; 2 Verilog代码描述 module DFF_SR(CLK, D, Rd, Sd, Q, QN);input CLK, D, Rd, Sd;output Q, QN;reg Q_DFF;always (posedge CLKor negedge Rd or negedge Sd)beginif(!Rd)Q_DFF < 1b0;else if(!Sd)Q_DFF < 1b1;e…

问题:泡泡纱、市布属()织物。 #笔记#知识分享#职场发展

问题&#xff1a;泡泡纱、市布属&#xff08;&#xff09;织物。 A.纯棉 B.化纤 C.涤棉 D.纯麻 参考答案如图所示

APP软件系统的开发流程

APP软件系统的开发是一个复杂的过程&#xff0c;需要多方面的知识和技能。建议选择专业的开发团队进行开发&#xff0c;以确保APP的质量和成功。APP软件系统的开发流程通常包括以下几个阶段。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合…

抖音直播违规规定有哪些?(直播违禁词汇总表)

全民直播的同时也有不少新手直播玩家处处碰壁,直播间没人气,直播不知道说什么甚至直播间被封。 收到直播封禁通知的朋友,轻者封禁直播账号两三天,严重着可能永久封禁直播间! 今天我们重点来说说直播间被封是怎么回事?如何避免抖音直播间被封?抖音直播间违规规定有哪些?抖音…

2024年最新机动车签字授权人考试题库。

31."简易瞬态工况法"所使用的五气分析仪的温度范图:分析系统及相关部件应在&#xff08; &#xff09;。 A.0-40℃ B.0-50℃ C.0-60℃ D.-10-40℃ 答案:A 32.稀释氧传感器环境空气量程检测时的读数值位于&#xff08; &#xff09;%vol范围之外时&#xff0c;应…