Codeforces Round 954 (Div. 3) A B C D

news2025/1/11 11:42:43

A. X Axis

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

You are given three points with integer coordinates x 1 x_1 x1, x 2 x_2 x2, and x 3 x_3 x3 on the X X X axis ( 1 ≤ x i ≤ 10 1 \leq x_i \leq 10 1xi10). You can choose any point with an integer coordinate a a a on the X X X axis. Note that the point a a a may coincide with x 1 x_1 x1, x 2 x_2 x2, or x 3 x_3 x3. Let f ( a ) f(a) f(a) be the total distance from the given points to the point a a a. Find the smallest value of f ( a ) f(a) f(a).

The distance between points a a a and b b b is equal to ∣ a − b ∣ |a - b| ab. For example, the distance between points a = 5 a = 5 a=5 and b = 2 b = 2 b=2 is 3 3 3.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 3 1 \leq t \leq 10^3 1t103) — the number of test cases. Then follows their descriptions.

The single line of each test case contains three integers x 1 x_1 x1, x 2 x_2 x2, and x 3 x_3 x3 ( 1 ≤ x i ≤ 10 1 \leq x_i \leq 10 1xi10) — the coordinates of the points.

Output

For each test case, output the smallest value of f ( a ) f(a) f(a).

Example

i n p u t \tt input input
8
1 1 1
1 5 9
8 2 8
10 9 3
2 1 1
2 4 1
7 3 5
1 9 4
o u t p u t \tt output output
0
8
6
7
1
3
4
8

Note

In the first test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 1 a = 1 a=1: f ( 1 ) = ∣ 1 − 1 ∣ + ∣ 1 − 1 ∣ + ∣ 1 − 1 ∣ = 0 f(1) = |1 - 1| + |1 - 1| + |1 - 1| = 0 f(1)=∣11∣+∣11∣+∣11∣=0.

In the second test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 5 a = 5 a=5: f ( 5 ) = ∣ 1 − 5 ∣ + ∣ 5 − 5 ∣ + ∣ 9 − 5 ∣ = 8 f(5) = |1 - 5| + |5 - 5| + |9 - 5| = 8 f(5)=∣15∣+∣55∣+∣95∣=8.

In the third test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 8 a = 8 a=8: f ( 8 ) = ∣ 8 − 8 ∣ + ∣ 2 − 8 ∣ + ∣ 8 − 8 ∣ = 6 f(8) = |8 - 8| + |2 - 8| + |8 - 8| = 6 f(8)=∣88∣+∣28∣+∣88∣=6.

In the fourth test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 9 a = 9 a=9: f ( 10 ) = ∣ 10 − 9 ∣ + ∣ 9 − 9 ∣ + ∣ 3 − 9 ∣ = 7 f(10) = |10 - 9| + |9 - 9| + |3 - 9| = 7 f(10)=∣109∣+∣99∣+∣39∣=7.

Tutorial

易得只要找到的点在其最大值和最小值中间即可

此解法时间复杂度为 O ( n ) \mathcal O(n) O(n),即找最大值和最小值的复杂度

Solution

for _ in range(int(input())):
    a = list(map(int, input().split()))
    print(max(a) - min(a))

B. Matrix Stabilization

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

You are given a matrix of size n × m n \times m n×m, where the rows are numbered from 1 1 1 to n n n from top to bottom, and the columns are numbered from 1 1 1 to m m m from left to right. The element at the intersection of the i i i-th row and the j j j-th column is denoted by a i j a_{ij} aij.

Consider the algorithm for stabilizing matrix a a a:

  1. Find the cell ( i , j ) (i, j) (i,j) such that its value is strictly greater than the values of all its neighboring cells. If there is no such cell, terminate the algorithm. If there are multiple such cells, choose the cell with the smallest value of i i i, and if there are still multiple cells, choose the one with the smallest value of j j j.
  2. Set a i j = a i j − 1 a_{ij} = a_{ij} - 1 aij=aij1.
  3. Go to step 1 1 1.

In this problem, cells ( a , b ) (a, b) (a,b) and ( c , d ) (c, d) (c,d) are considered neighbors if they share a common side, i.e., ∣ a − c ∣ + ∣ b − d ∣ = 1 |a - c| + |b - d| = 1 ac+bd=1.

Your task is to output the matrix a a a after the stabilization algorithm has been executed. It can be shown that this algorithm cannot run for an infinite number of iterations.

Input

Each test consists of multiple sets of input data. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1t104) — the number of sets of input data. This is followed by their description.

The first line of each set of input data contains two integers n n n and m m m ( 1 ≤ n , m ≤ 100 , n ⋅ m > 1 1 \leq n, m \leq 100, n \cdot m > 1 1n,m100,nm>1) — the number of rows and columns of matrix a a a.

The next n n n lines describe the corresponding rows of the matrix. The i i i-th line contains m m m integers a i 1 , a i 2 , … , a i m a_{i1}, a_{i2}, \ldots, a_{im} ai1,ai2,,aim ( 1 ≤ a i j ≤ 1 0 9 1 \leq a_{ij} \leq 10^9 1aij109).

It is guaranteed that the sum of n ⋅ m n \cdot m nm over all sets of input data does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each set of input data, output n n n lines with m m m numbers in each line — the values of the cells of matrix a a a after the stabilization algorithm.

Example

i n p u t \tt input input
6
1 2
3 1
2 1
1
1
2 2
1 2
3 4
2 3
7 4 5
1 8 10
5 4
92 74 31 74
74 92 17 7
31 17 92 3
74 7 3 92
7 31 1 1
3 3
1000000000 1 1000000000
1 1000000000 1
1000000000 1 1000000000
o u t p u t \tt output output
1 1
1
1
1 2
3 3
4 4 5
1 8 8
74 74 31 31
74 74 17 7
31 17 17 3
31 7 3 3
7 7 1 1
1 1 1
1 1 1
1 1 1

Note

In the first set of input data, the algorithm will select the cell ( 1 , 1 ) (1, 1) (1,1) twice in a row and then terminate.

In the second set of input data, there is no cell whose value is strictly greater than the values of all neighboring cells.

In the third set of input data, the algorithm will select the cell ( 2 , 2 ) (2, 2) (2,2) and then terminate.

In the fourth set of input data, the algorithm will select the cell ( 1 , 1 ) (1, 1) (1,1) three times and then the cell ( 2 , 3 ) (2, 3) (2,3) twice.

Tutorial

可以一次一次遍历所有元素,根据规则,如果有元素被更改,则进行下一次遍历,如果遍历一次根据都没有更改元素,那么说明矩阵都不能再改变了,即得到答案

此解法时间复杂度为 O ( n m ) \mathcal O(nm) O(nm)

Solution

dx = [0, 0, 1, -1]
dy = [1, -1, 0, 0]

def ok(x, y, n, m):
    return 0 <= x < n and 0 <= y < m

for _ in range(int(input())):
    n, m = map(int, input().split())
    g = [list(map(int, input().split())) for _ in range(n)]
    for i in range(n):
        for j in range(m):
            mx = 0
            for k in range(4):
                x, y = i + dx[k], j + dy[k]
                if ok(x, y, n, m):
                    mx = max(mx, g[x][y])
            g[i][j] = min(g[i][j], mx)
    for gi in g:
        print(*gi)

C. Update Queries

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

Let’s consider the following simple problem. You are given a string s s s of length n n n, consisting of lowercase Latin letters, as well as an array of indices i n d ind ind of length m m m ( 1 ≤ i n d i ≤ n 1 \leq ind_i \leq n 1indin) and a string c c c of length m m m, consisting of lowercase Latin letters. Then, in order, you perform the update operations, namely, during the i i i-th operation, you set s i n d i = c i s_{ind_i} = c_i sindi=ci. Note that you perform all m m m operations from the first to the last.

Of course, if you change the order of indices in the array i n d ind ind and/or the order of letters in the string c c c, you can get different results. Find the lexicographically smallest string s s s that can be obtained after m m m update operations, if you can rearrange the indices in the array i n d ind ind and the letters in the string c c c as you like.

A string a a a is lexicographically less than a string b b b if and only if one of the following conditions is met:

  • a a a is a prefix of b b b, but a ≠ b a \neq b a=b;
  • in the first position where a a a and b b b differ, the symbol in string a a a is earlier in the alphabet than the corresponding symbol in string b b b.

Input

Each test consists of several sets of input data. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1t104) — the number of sets of input data. Then follows their description.

The first line of each set of input data contains two integers n n n and m m m ( 1 ≤ n , m ≤ 1 0 5 1 \leq n, m \leq 10^5 1n,m105) — the length of the string s s s and the number of updates.

The second line of each set of input data contains a string s s s of length n n n, consisting of lowercase Latin letters.

The third line of each set of input data contains m m m integers i n d 1 , i n d 2 , … , i n d m ind_1, ind_2, \ldots, ind_m ind1,ind2,,indm ( 1 ≤ i n d i ≤ n 1 \leq ind_i \leq n 1indin) — the array of indices i n d ind ind.

The fourth line of each set of input data contains a string c c c of length m m m, consisting of lowercase Latin letters.

It is guaranteed that the sum of n n n over all sets of input data does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105. Similarly, the sum of m m m over all sets of input data does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each set of input data, output the lexicographically smallest string s s s that can be obtained by rearranging the indices in the array i n d ind ind and the letters in the string c c c as you like.

Example

i n p u t \tt input input
4
1 2
a
1 1
cb
4 4
meow
1 2 1 4
zcwz
7 4
abacaba
1 3 5 7
damn
7 10
traktor
7 6 5 4 3 2 1 6 4 2
codeforces
o u t p u t \tt output output
b
cwoz
abdcmbn
ccdeefo

Note

In the first set of input data, you can leave the array i n d ind ind and the string c c c unchanged and simply perform all operations in that order.

In the second set of input data, you can set the array i n d = [ 1 , 1 , 4 , 2 ] ind = [1, 1, 4, 2] ind=[1,1,4,2] and c = c = c= “zczw”. Then the string s s s will change as follows: m e o w → z e o w → c e o w → c e o z → c w o z meow \rightarrow zeow \rightarrow ceow \rightarrow ceoz \rightarrow cwoz meowzeowceowceozcwoz.

In the third set of input data, you can leave the array i n d ind ind unchanged and set $c = $ “admn”. Then the string s s s will change as follows: a b a c a b a → a b a c a b a → a b d c a b a → a b d c m b a → a b d c m b n abacaba \rightarrow abacaba \rightarrow abdcaba \rightarrow abdcmba \rightarrow abdcmbn abacabaabacabaabdcabaabdcmbaabdcmbn.

Tutorial

由于只有最后一次修改会改变每个位置的值,所以只需要将每个靠前的位置的元素变为更小的字符即可

所以可以贪心地对所有可以更改的字符排序,将每个修改过的位置贪心选择更小的字符即可

此解法时间复杂度为 O ( n log ⁡ n ) \mathcal O(n \log n) O(nlogn)

Solution

for _ in range(int(input())):
    n, m = map(int, input().split())
    s = list(input())
    a = sorted(set(list(map(int, input().split()))))
    c = sorted(list(input()))
    idx = 0
    for ai in a:
        s[ai - 1] = c[idx]
        idx += 1
    print(''.join(s))

D. Mathematical Problem

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

You are given a string s s s of length n > 1 n \gt 1 n>1, consisting of digits from 0 0 0 to 9 9 9. You must insert exactly n − 2 n - 2 n2 symbols + + + (addition) or × \times × (multiplication) into this string to form a valid arithmetic expression.

In this problem, the symbols cannot be placed before the first or after the last character of the string s s s, and two symbols cannot be written consecutively. Also, note that the order of the digits in the string cannot be changed. Let’s consider s = 987009 s = 987009 s=987009:

  • From this string, the following arithmetic expressions can be obtained: 9 × 8 + 70 × 0 + 9 = 81 9 \times 8 + 70 \times 0 + 9 = 81 9×8+70×0+9=81, 98 × 7 × 0 + 0 × 9 = 0 98 \times 7 \times 0 + 0 \times 9 = 0 98×7×0+0×9=0, 9 + 8 + 7 + 0 + 09 = 9 + 8 + 7 + 0 + 9 = 33 9 + 8 + 7 + 0 + 09 = 9 + 8 + 7 + 0 + 9 = 33 9+8+7+0+09=9+8+7+0+9=33. Note that the number 09 09 09 is considered valid and is simply transformed into 9 9 9.
  • From this string, the following arithmetic expressions cannot be obtained: + 9 × 8 × 70 + 09 +9 \times 8 \times 70 + 09 +9×8×70+09 (symbols should only be placed between digits), 98 × 70 + 0 + 9 98 \times 70 + 0 + 9 98×70+0+9 (since there are 6 6 6 digits, there must be exactly 4 4 4 symbols).

The result of the arithmetic expression is calculated according to the rules of mathematics — first all multiplication operations are performed, then addition. You need to find the minimum result that can be obtained by inserting exactly n − 2 n - 2 n2 addition or multiplication symbols into the given string s s s.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1t104) — the number of test cases. Then follows their description.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 20 2 \leq n \leq 20 2n20) — the length of the string s s s.

The second line of each test case contains a string s s s of length n n n, consisting of digits from 0 0 0 to 9 9 9.

Output

For each test case, output the minimum result of the arithmetic expression that can be obtained by inserting exactly n − 2 n - 2 n2 addition or multiplication symbols into the given string.

Example

i n p u t \tt input input
18
2
10
2
74
2
00
2
01
3
901
3
101
5
23311
6
987009
7
1111111
20
99999999999999999999
20
00000000000000000000
4
0212
18
057235283621345395
4
1112
20
19811678487321784121
4
1121
4
2221
3
011
o u t p u t \tt output output
10
74
0
1
9
1
19
0
11
261
0
0
0
12
93
12
24
0

Note

In the first four test cases, we cannot add symbols, so the answer will be the original number.

In the fifth test case, the optimal answer looks as follows: 9 × 01 = 9 × 1 = 9 9 \times 01 = 9 \times 1 = 9 9×01=9×1=9.

In the sixth test case, the optimal answer looks as follows: 1 × 01 = 1 × 1 = 1 1 \times 01 = 1 \times 1 = 1 1×01=1×1=1.

In the seventh test case, the optimal answer looks as follows: 2 + 3 + 3 + 11 = 19 2 + 3 + 3 + 11 = 19 2+3+3+11=19.

In the eighth test case, one of the optimal answers looks as follows: 98 × 7 × 0 + 0 × 9 = 0 98 \times 7 \times 0 + 0 \times 9 = 0 98×7×0+0×9=0.

Tutorial

由于需要刚好插入 n − 2 n - 2 n2 个符号,所以其中被运算的若干数字中,有且仅有一个数字是两位数,其余数字均为个位数,所以可以枚举这个两位数,其余均为一位数

然后对这些数字进行计算,如果其中有 0,那么就可以乘以 0,最终答案即为 0 0 0,如果遇到 1,则直接乘以 1,此时数字不变,如果遇到的数字大于 1,那么直接加上这个数即可(如果乘以这个数那么必定比加上这个数大)

此解法时间复杂度为 O ( n 2 ) \mathcal O(n ^ 2) O(n2)

Solution

def f(a):
    if a.count(0):
        return 0
    cnt = 0
    for ai in a:
        if ai > 1:
            cnt += ai
    return max(cnt, 1)

for _ in range(int(input())):
    n = int(input())
    s = list(input())
    ans = 270
    for i in range(n - 1):
        a = []
        for j in range(n):
            if i == j:
                a.append(int(s[j] + s[j + 1]))
            elif j != i + 1:
                a.append(int(s[j]))
        ans = min(ans, f(a))
    print(ans)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1855633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习&#xff0c;掌握ROS2底层基本分布式原理&#xff0c;并具有机器人建模和…

RFID技术在汽车轮胎加工工艺中的革新应用

RFID技术在汽车轮胎加工工艺中的革新应用 物联网技术的飞速发展&#xff0c;无线射频识别&#xff08;Radio Frequency Identification&#xff0c;简称RFID&#xff09;技术因其独特的优势&#xff0c;在各行各业中展现出巨大的应用潜力。特别是在汽车制造业&#xff0c;RFID…

Java反射详细总结

什么是反射&#xff1f; 反射&#xff0c;指的是加载类的字节码到内存&#xff0c;并以编程的方法解刨出类中的各个成分&#xff08;成员变量、方法、构造器等&#xff09;。 反射获取的是类的信息&#xff0c;那么反射的第一步首先获取到类才行。由于Java的设计原则是万物皆对…

【火猫体育】欧洲杯:苏格兰VS匈牙利焦点大战

北京时间6月24日&#xff0c;欧洲杯A组苏格兰VS匈牙利的焦点大战将正式打响。这场比赛对于苏格兰队来说不容有失&#xff0c;因为球队必须战胜对手才能有希望从小组赛出线&#xff0c;晋级本届欧洲杯16强。苏格兰在欧洲杯首战&#xff0c;就被东道主德国队上了一课。德国队在比…

毕设源码直通车

看下方 文心海资源库 名片 领取源码

Python代码升级工具库之pyupgrade使用详解

概要 在Python开发过程中,随着语言版本的更新和改进,代码也需要不断地进行升级和优化,以利用新版本提供的特性和性能提升。pyupgrade 库是一个自动化工具,它能够帮助开发者将代码升级到指定的Python版本,自动应用新的语法和特性,简化了代码维护工作。本文将详细介绍 pyu…

网络物理隔离后 可以用保密U盘进行数据安全交换吗?

企业用的保密U盘通常被设计用于存储和传输敏感信息&#xff0c;以确保数据的安全和保密性。 在网络之间实现了物理隔离后&#xff0c;使用保密U盘进行数据安全交换是一种常见的做法。物理隔离确保了两个网络之间的完全分离&#xff0c;因此使用保密U盘可以作为一种安全的手段来…

MySQL面试重点-2

16. MySQL数据引擎&#xff1a; 引擎分类&#xff1a; show engines命令查看数据库支持的存储引擎。 描述一下InnoDB和MyISAM的区别&#xff1f;** InnoDB存储限制64TB&#xff0c;而MyISAM存储限制256TB&#xff1b;InnoDB支持事物&#xff0c;而MyISAM不支持&#xff1b;I…

(13)DroneCAN 适配器节点(一)

文章目录 前言 1 特点 2 固件 3 ArduPilot固件DroneCAN设置 4 DroneCAN适配器节点 前言 这些节点允许现有的 ArduPilot 支持的外围设备作为 DroneCAN 或 MSP 设备适应 CAN 总线。这也允许扩展自动驾驶仪硬件的功能。如允许 I2C 设备&#xff08;如罗盘或空速&#xff09…

maven的生命周期是什么?看这一篇就够了!

大家可能都知道maven是什么&#xff1f;Maven 是一个流行的项目管理工具&#xff0c;用于构建、发布和管理 Java 项目。那么我们在用maven将项目打包成一个jar包的时候&#xff0c;他是怎么运作的&#xff0c;mvn clean install都做了哪些小动作&#xff1f;其中的package和ins…

《web应用技术》第十二次课后作业

1.servlet基础知识 1.定义 Java Servlet 是运行在 Web 服务器或应用服务器上的程序&#xff0c;它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 HTTP 服务器上的数据库或应用程序之间的中间层。 2.生命周期 init 方法被设计成只调用一次。它在第一次创建 Servlet 时被…

Python酷库之旅-第三方库openpyxl(07)

目录 一、 openpyxl库的由来 1、背景 2、起源 3、发展 4、特点 4-1、支持.xlsx格式 4-2、读写Excel文件 4-3、操作单元格 4-4、创建和修改工作表 4-5、样式设置 4-6、图表和公式 4-7、支持数字和日期格式 二、openpyxl库的优缺点 1、优点 1-1、支持现代Excel格式…

SVM算法-人脸识别背后技术详解

引言 支持向量机&#xff08;SVM&#xff09;是一种强大的监督学习算法&#xff0c;广泛应用于分类和回归任务中。本文将详细介绍SVM算法在人脸识别任务中的应用&#xff0c;并通过代码示例来展示其背后的技术精髓。我们将分三大部分来展开&#xff0c;本部分将重点介绍SVM算法…

数据资产与人才战略:聚焦数据人才培养与引进,构建专业团队,为企业数据资产增值提供源源不断的智力支持,确保数据资产的高效利用与持续增长

一、引言 随着信息技术的飞速发展&#xff0c;数据已成为企业最宝贵的资产之一。在数字化时代&#xff0c;数据资产的高效利用和持续增长对于企业的竞争力至关重要。而要实现这一目标&#xff0c;人才是关键。本文将围绕数据资产与人才战略展开讨论&#xff0c;重点分析数据人…

【喜报】全球第三名HCIE-openEuler在誉天诞生!

2024年6月18日&#xff0c;誉天首期HCIE-openEuler班刘同学一次性通过HCIE-openEuler实验考试&#xff0c;并且成为全球第三位HCIE-openEuler专家,刘同学也是誉天首位通过该方向的HCIE学员。 同时恭喜刘同学获得誉天欧拉HCIE专属奖学金5000元&#xff0c;让我们祝贺他&#xff…

我的常见问题记录

1,maven在idea工具可以正常使用,在命令窗口执行出现问题 代码: E:\test-hello\simple-test>mvn clean compile [INFO] Scanning for projects... [WARNING] [WARNING] Some problems were encountered while building the effective model for org.consola:simple-test:jar…

win11 + ubuntu linux双系统:开机直接进入windows修复

https://zhuanlan.zhihu.com/p/666702893 这种 双系统直接进入win 的问题&#xff0c;应该属于引导坏了&#xff0c;即grub坏了。 原因&#xff1a;笔记本送修了&#xff0c;没拆掉硬盘&#xff0c;可能引导被售后搞坏了。 在win-磁盘管理中查看分区&#xff0c;linux的分区…

文献阅读:通过双线性建模来破译神经元类型连接的遗传密码

文献介绍 文献题目 Deciphering the genetic code of neuronal type connectivity through bilinear modeling 研究团队 Mu Qiao&#xff08;美国加州理工学院&#xff09; 发表时间 2024-06-10 发表期刊 eLife 影响因子 7.7 DOI 10.7554/eLife.91532.3 摘要 了解不同神经元…

仓库管理系统01--数据库介绍

1、表结构 1&#xff09;UserInfo 用户表 2&#xff09;Supplier供应商表 3&#xff09;Store 仓库表 4&#xff09;其他表 Customer 客户表&#xff0c;Spec 规格表&#xff0c;GoodsType 货物类别表&#xff0c;Goods 货物表&#xff0c;InStore 入库表&#xff0c;OutSto…

STM32 - LED灯 蜂鸣器

&#x1f6a9; WRITE IN FRONT &#x1f6a9; &#x1f50e; 介绍&#xff1a;"謓泽"正在路上朝着"攻城狮"方向"前进四" &#x1f50e;&#x1f3c5; 荣誉&#xff1a;2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…