【因果推断python】51_去偏/正交机器学习3

news2024/11/20 18:37:45

目录

What is Non-Parametric About?


What is Non-Parametric About?

在我们继续之前,我只想强调一个常见的误解。当我们考虑使用非参数 Double-ML 模型来估计 CATE 时,我们似乎会得到一个非线性治疗效果。例如,让我们假设一个非常简单的数据生成过程(DGP),其中 discont 对销售额的影响是非线性的,但却是通过平方根函数产生的。

Sales_i=20+10*\sqrt{Discount_i}+e_i
治疗效果由该销售函数相对于治疗的导数给出。

 \frac{\partial Sales_i}{\partial Discount_i}=\frac{10}{2\sqrt{Discount_i}}

我们可以看到,治疗效果不是线性的。实际上,治疗效果会随着治疗次数的增加而减弱。这对 DGP 有很大的意义。起初,一点点折扣会使销售额大幅增加。但是,当我们给予的折扣太多时,多一个单位的折扣对销售额的影响就会越来越小,因为人们不会想买到无穷多。因此,折扣只在人们满足之前有效。

那么问题来了,非参数 ML 能否捕捉到治疗效果中的这种饱和行为?它能否从较小的折扣水平推断出,如果折扣更高,治疗效果会更低?答案是......可以这么说。为了更好地理解这一点,让我们生成类似上述 DGP 的数据。

np.random.seed(321)
n=5000
discount = np.random.gamma(2,10, n).reshape(-1,1)
discount.sort(axis=0) # for better ploting
sales = np.random.normal(20+10*np.sqrt(discount), 1)

如果我们绘制这个 DGP,就可以看到这些变量之间的平方根关系。

plt.plot(discount, 20 + 10*np.sqrt(discount))
plt.ylabel("Sales")
plt.xlabel("Discount");

现在,让我们对这些数据应用非参数双重/偏差 ML。

debias_m = LGBMRegressor(max_depth=3)
denoise_m = LGBMRegressor(max_depth=3)

# orthogonalising step
discount_res =  discount.ravel() - cross_val_predict(debias_m, np.ones(discount.shape), discount.ravel(), cv=5)
sales_res =  sales.ravel() - cross_val_predict(denoise_m, np.ones(sales.shape), sales.ravel(), cv=5)

# final, non parametric causal model
non_param = LGBMRegressor(max_depth=3)
w = discount_res ** 2 
y_star = sales_res / discount_res

non_param.fit(X=discount_res.reshape(-1,1), y=y_star.ravel(), sample_weight=w.ravel());

通过上述模型,我们可以得到 CATE 估计值。这里的问题是 CATE 不是线性的。随着治疗次数的增加,CATE 应该减少。我们要回答的问题是,非参数模型能否捕捉到这种非线性。

要正确回答这个问题,让我们记住双重/偏差 ML 对数据生成过程的基本假设是什么。这些假设可以从我们之前列出的等式中看出。

\tilde{Y}_i=\tau(X_i)\tilde{T}_i+e_i

也就是说,残差结果等于残差治疗乘以条件治疗效果。这意味着治疗对结果的影响是线性的。这里不存在非线性。上述模型表明, 如果我们将治疗从 1 增加到 10 或从 100 增加到 110, outcome将提高一个固定的 \tau(X_i)。这是一个简单的乘法。

那么,这是否意味着非参数模型无法捕捉治疗效果的非线性呢?也不尽然... 相反,Double/ML 找到了非线性 CATE 的局部线性近似值。换句话说,它找到的是在治疗水平上或治疗周围,结果相对于治疗的导数这相当于找到与治疗点上的结果函数相切的线的斜率。

这意味着,是的,非参数双 ML 会发现随着治疗量的增加,治疗效果会变小。但是,不,它不会发现非线性治疗效果,而是局部线性治疗效果。我们甚至可以将这些线性近似值与地面真实的非线性因果效应进行对比,事实上,它们是很好的近似值。

cate = non_param.predict(X=discount)

plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
plt.scatter(discount, sales)
plt.plot(discount, 20 + 10*np.sqrt(discount), label="Ground Truth", c="C1")
plt.title("Sales by Discount")
plt.xlabel("Discount")
plt.legend()

plt.subplot(1,2,2)
plt.scatter(discount, cate, label="$\hat{\\tau}(x)$", c="C4")
plt.plot(discount, 5/np.sqrt(discount), label="Ground Truth", c="C2")
plt.title("CATE ($\partial$Sales) by Discount")
plt.xlabel("Discount")
plt.legend();

这听起来像是技术性问题,但却有非常实际的意义。例如,假设您在上面的例子中发现对某位顾客的处理效应为 2,这意味着如果您将折扣提高 1 个单位,您对该顾客的销售额就会增加 2 个单位。看到这个结果,你可能会想:"太好了!我会给这个单位很多折扣!毕竟,每增加 1 个单位的折扣,我就能获得 2 个单位的销售额"。然而,这是错误的结论。只有在这个折扣水平上,治疗效果才是 2。只要提高折扣,效果就会下降。例如,假设这位顾客只获得了 5 折,所以她的治疗效果很高。如果你看到了这个巨大的治疗效果,并以此为理由给这位顾客 20 折。但是,当你这样做时,效果可能会从 2 降到 0.5 左右。在治疗效果为 2 时,打 20 折是合理的,但在治疗效果为 0.5 时,打 20 折就不再有利可图了。

这意味着,在将非线性治疗效果推断到新的治疗水平时,您必须格外小心。否则,你最终可能会做出非常无利可图的决定。另一种说法是,当治疗效果不是线性的时候,即使是非参数的双重/偏差-ML 也很难做出反事实结果预测。它会试图将治疗效果(TE)从低治疗水平线性推断到高治疗水平,或反过来推断。由于非线性,这种推断很可能会出现偏差。

为了解决这个问题,有一个最终的想法。请记住,与我们之前看到的方法相比,这个方法的科学性要低得多。它可以归结为在应用正交化程序后使用 S-学习器,但我说得太快了。让我们接下来看看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1855156.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode665.非递减数列

LeetCode刷题记录 文章目录 📜题目描述💡解题思路⌨C代码 📜题目描述 给你一个长度为 n 的整数数组 nums ,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列。 我们是这样定义一个非递减数列的&am…

昆明理工大学24计算机考研各专业复试线大幅下降,B区国家线即可复试!

昆明理工大学(Kunming University of Science and Technology),位于云南省昆明市,是云南省综合性重点大学,由国防科技工业局与云南省人民政府共建高校,入选“中西部高校基础能力建设工程”、国家建设高水平…

第10关:视图1 、第11关:视图2 、第12关:用户。

目录 第10关:视图1 任务描述 知识补充 答案 第11关:视图2 任务描述 知识补充 答案 第12关:用户 任务描述 知识补充 答案 本篇博客声明:所有题的答案不在一起,可以去作者博客专栏寻找其它文章。 第10关&…

Phi-3 模型手机部署教程(微软发布的可与GPT-3.5媲美的小模型)

前面几篇博文,老牛同学和大家一起在个人电脑部署了Qwen2、GLM4、Llama3、ChatTTS和Stable Diffusion等 LLM 大模型,也通过 API 和 WebUI 的方式完成了体验。 但是这些大模型因为部署在个人电脑本地,不能够随时携带。如果能在手机上部署大模型…

EtherCAT笔记(三) —— 主站与从站的硬件组成

1. EtherCAT 主站的硬件组成 EtherCAT主站使用标准以太网控制器,也即EtherCAT主站可以使用以太网控制器的任何设备。当我们有一台带网口的笔记本、工控机,甚至是树莓派也可以作为EtherCAT主站。 EtherCAT协议是对Ethernet协议在实时控制等方面的优化&am…

一篇文章带你快速入门java

文章目录 一、一个简单的java代码1.1 Java程序的结构由三个不成组成:1.2 运行java程序1.3 JDK,JRE,JVM之间的关系?(面试题)1.4 标识符1.5 注释1.6 关键字 一、一个简单的java代码 public class HelloJava {public static void main(String[] args) {Sys…

【建议收藏】Android中高级大厂面试源码秘籍,为你备战2021金三银四,直通大厂

首先来说下为什么要读源码,有学习源码的必要吗? 为什么要阅读源码? 关于为什么阅读和学习源码,我个人认为可能有以下几点: (一)吊打面试官,应对面试 为了找到更好的工作&#xff…

Linux配置中文环境

文章目录 前言中文语言包中文输入法中文字体 前言 在Linux系统中修改为中文环境,通常涉及以下几个步骤: 中文语言包 更新源列表: 更新系统的软件源列表和语言环境设置,确保可以安装所需的语言包。 sudo apt update sudo apt ins…

Python+Pytest+Yaml+Request+Allure框架源代码之(一)common公共方法封装

common模块: get_path.py:获取路径方法 # -*- coding: UTF-8 -*- import os# 项目根目录 BASE_DIR os.path.dirname(os.path.dirname(os.path.abspath(__file__)))# 配置文件目录 CONFIG_DIR os.path.join(BASE_DIR,config)# 测试用例文件目录 TESTCA…

康奈尔大学之论文审稿模型Reviewer2及我司七月对其的实现(含PeerRead)

前言 自从我司于23年7月开始涉足论文审稿领域之后「截止到24年6月份,我司的七月论文审稿GPT已经迭代到了第五版,详见此文的8.1 七月论文审稿GPT(从第1版到第5版)」,在业界的影响力越来越大,所以身边朋友如发现业界有相似的工作&a…

年薪50w+的项目经理,手把手教你如何复盘

复盘是一种重要的学习和改进工具,对于项目经理来说,能帮助识别项目中的成功与失败,为未来的项目管理提供宝贵经验。 理论部分 定义目标。在开始复盘之前,明确复盘的目标是什么。是为了找出项目中的问题并提出解决方案&#xff0c…

自动驾驶规划中使用 OSQP 进行二次规划 代码原理详细解读

目录 1 问题描述 什么是稀疏矩阵 CSC 形式 QP Path Planning 问题 1. Cost function 1.1 The first term: 1.2 The second term: 1.3 The thrid term: 1.4 The forth term: 对 Qx 矩阵公式的验证 整体 Q 矩阵(就是 P 矩阵,二次项的权重矩阵&…

Android开发:自定义TabLayout,神奇效果竟是如此简单

此时有的小伙伴可能会想,自定义view太麻烦,不如让UI直接把这个弧度切出来,不是一共就三个tab项嘛,Textview,ImageView… 这样横着排起来,然后做适当的显示和隐藏不就行啦。 是的,确实是可以&am…

人工智能在数字病理切片虚拟染色以及染色标准化领域的研究进展|顶刊速递·24-06-23

小罗碎碎念 本期推文主题:人工智能在数字病理切片虚拟染色以及染色标准化领域的研究进展 这一期的推文是我发自内心觉得为数不多,特别宝贵的一篇推文,原因很简单——可参考的文献相对较少&方向非常具有研究意义&现在不卷。 数字病理…

nginx服务器连接数告警

序言 只要系统之间有交互,那么就会有连接数,连接数的告警阈值一般设置个几万,当连接数开始告警之后,怎么来排查呢? 连接数过多,会消耗cpu,内存,文件句柄等资源,其实也还好…

《算法笔记》总结No.2——模拟

一.简单模拟 考察代码能力,不涉及算法:一类题目怎么说你就怎么做的类型~ 巴音布鲁克比赛,以车队为基准评选冠军。业务要求是:第一行输入正整数N,代表车手的总个数;接下来的N行每行键入两个数字&#xff1a…

【TOOL】ceres学习笔记(二) —— 自定义函数练习

文章目录 一、曲线方程1. 问题描述2. 实现方案 一、曲线方程 1. 问题描述 现有数学模型为 f ( x ) A e x B s i n ( x ) C x D f(x)Ae^xBsin(x)Cx^D f(x)AexBsin(x)CxD ,但不知道 A A A 、 B B B 、 C C C 、 D D D 各参数系数,实验数据中含有噪声…

Windows程序设计课程作业-3(文件并发下载)

目录 目录 1.作业内容 2.作业要求 3.主要思路 1)窗体和组件初始化 2)下载管理器实例化 3)按钮点击事件处理 4)窗体加载事件处理 5)下载消息处理 4.主要难点 1)多线程管理: 2&#xff09…

智能优化算法改进策略之局部搜索算子(六)--进化梯度搜索

1、原理介绍 进化梯度搜索(Evolutionary Gradient Search, EGS)[1]是兼顾进化计算与梯度搜索的一种混合算法,具有较强的局部搜索能力。在每次迭代过程中,EGS方法首先用受进化启发的形式估计梯度方向,然后以最陡下降的方式执行实际的迭代步骤&…

【JavaSE ⑧】P219 ~ 225 Date类‘’DateFormat类转化Date和字符串;Calendar类获得日历中某值,修改日历,日历转日期

目录 日期时间类1 Date类概述常用方法 2DateFormat类构造方法格式规则常用方法parse方法format方法 3 Calendar类概念获取方式常用方法get/set方法add方法getTime方法 ● 练习1.判断Date不同参数构造的输出2. 用日期时间相关的API,计算一个人已经出生了多少天。3. 获…