发表在SIGMOD 2024上的高维向量检索/向量数据库/ANNS相关论文

news2025/1/15 6:50:09

前言

SIGMOD 2024会议最近刚在智利圣地亚哥结束,有关高维向量检索/向量数据库/ANNS的论文主要有5篇,涉及混合查询(带属性或范围过滤的向量检索)优化、severless向量数据库优化、量化编码优化、磁盘图索引优化。此外,也有一些其它相关论文,比如FedKNN: Secure Federated k-Nearest Neighbor Search。

下面对这些论文进行一个简单汇总介绍。

SeRF : Segment Graph for Range-Filtering Approximate Nearest Neighbor Search

在这里插入图片描述
这篇论文主要研究带范围过滤的向量检索问题,作者基于HNSW提出了两种范围过滤图索引:SegmentGraph和2DSegmentGraph,它们分别用于处理范围约束是半界范围和任意范围的情况。由于构建一个考虑范围情况的索引会显著增加索引处理时间和索引尺寸,这篇论文主要对离线构建过程做了大量优化,从而大幅减少离线处理开销和显著压缩了索引。比如,SegmentGraph通过无损压缩实现了索引尺寸与原始HNSW相当。

RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search

在这里插入图片描述
这篇论文主要研究了一种新的量化(quantization)方法RaBitQ,讲高维向量编码为等维度的二值向量。与当前流行的PQ及其变体相比,RaBitQ具有如下优势:(1)距离评估是无偏的,具有理论概率误差界;(2)RaBitQ能实现更高的精度且只需更短的编码;(3)距离评估更高效。

Vexless : A Serverless Vector Data Management System Using Cloud Functions

在这里插入图片描述
这篇论文主要研究了在无服务器云函数(Cloud Funtions)下向量数据库的设计和优化,本文主要聚焦在三个方面:(1)Sharding策略;(2)通讯机制;(3)冷启动。本文基于Azure Functions对上述三个方面做了具体的优化,优化系统Vexless具有高弹性、低运营成本、细粒度计费模型等优点。

ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data

在这里插入图片描述
这篇论文主要研究混合查询问题,即带属性过滤约束的向量检索。当前混合查询技术路线主要有3类:前过滤、后过滤、混合过滤。本文的技术路线是沿着第3种,即为属性和向量构建混合索引,即设计专用于混合查询的索引。对于范围过滤,本文的方案可能仅适用于一些简单范围过滤情况,比如一定数量的年份,可能并不适用于具有非常精细的范围过滤约束的混合查询。

本文方案基于HNSW算法,优化HNSW的索引构建过程从而使构建的HNSW索引融合属性信息,主要思想与之前的NHQ、Filter-DiskANN等类似,都是把属性信息融入到近邻图索引中,从而使索引不仅包含向量近邻关系也考虑顶点之间的属性关系。ACORN构建了一个更“稠密”的HNSW,即邻居数更多了。显然,ACORN需要更多索引构建时间和索引内存占用开销。

执行混合查询时,若谓词的可选择性比较低,可能用前过滤比较适合,本文通过代价模型来根据查询谓词的可选择性来选择具体执行前过滤还是ACORN。

ACORN支持的过滤类型(y是谓词):(1)equals(y); (2)contains(y1,y2,…); (3)between(y1,y2); (4)regex-match(y).

在实验中,(3)过滤类型是年份。

Starling: An I/O-Efficient Disk-Resident Graph Index Framework for High-Dimensional Vector Similarity Search on Data Segment

在这里插入图片描述
本文提出了一种 I/O 高效的磁盘图索引框架Starling,以优化数据段内的数据布局和搜索策略。它有两个主要组成部分:(1)数据布局包含内存中导航图和重新排序的磁盘图索引,这增强了存储局部性并减少搜索路径长度,从而最大限度地减少磁盘带宽浪费; (2) 块搜索策略,旨在最大限度地减少向量查询执行期间昂贵的磁盘 I/O 操作。 在2GB内存和10GB磁盘容量的数据段上,Starling可容纳多达3300万个128维向量,提供超过0.9的平均精度以及低于1毫秒延迟的HVSS。与最先进的方法相比,Starling的吞吐量提高了43.9 倍,查询延迟降低了98%,同时保持了相同的精度水平。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1853922.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

btrace使用记录

关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 未经允许不得转载 目录 一、导读二、使用三、 推荐阅读 一、导…

技术管理转型之战:解锁管理新境界——直觉决策的艺术与科学

文章目录 引言一、直觉决策的定义与特点二、直觉决策在管理中的价值三、直觉决策的来源1、潜意识的心里过程2、基于价值观或道德的决策3、基于经验的决策4、影响发动的决策5、基于认知的决策 四、如何培养直觉决策能力五、直觉决策的风险与应对结语 引言 在快速变化的商业环境…

【论文阅读】场景生成及编辑3D定位论文阅读

<div id"content_views" class"htmledit_views" style"user-select: auto;"><div class"kdocs-document"> 前置知识 归纳偏置 关于归纳偏置的理解&#xff1a;首先推荐一篇解释归纳偏置非常好的博客&#xff1a;浅谈归纳…

mac苹果窗口辅助工具:Magnet for mac 2.14.0中文免激活版

Magnet 是一款针对 MacOS 系统的窗口管理工具软件。它能够帮助用户更加高效地管理和组织桌面上的窗口&#xff0c;通过简单的快捷键操作&#xff0c;可以将窗口自动调整到指定的位置和大小&#xff0c;实现多窗口快速布局。Magnet 还支持多显示器环境下的窗口管理&#xff0c;可…

Redis协议规范简介

Redis客户端使用为名为RESP&#xff08;Redis序列化协议&#xff09;的协议与Redis服务器进行通信。虽然该协议是专门为Redis设计的&#xff0c;但它也可以用于其他的CS软件项目的通信协议。 RESP可以序列化不同的数据类型&#xff0c;如整型&#xff0c;字符串&#xff0c;数…

【漏洞复现】畅捷通T+ keyEdit.aspx SQL漏洞

0x01 产品简介 畅捷通 T 是一款灵动&#xff0c;智慧&#xff0c;时尚的基于互联网时代开发的管理软件&#xff0c;主要针对中小型工贸与商贸企业&#xff0c;尤其适合有异地多组织机构(多工厂&#xff0c;多仓库&#xff0c;多办事处&#xff0c;多经销商)的企业&#xff0c;…

【华东南AWDP】第十七届全国大学生信息安全竞赛 CISCN 2024 创新实践能力赛区域赛 部分题解WP

前言&#xff1a;这次区域赛AWDP安恒作为支持&#xff0c;赛制风格遵循安恒&#xff0c;一小时check一次。室温35在室内坐了8小时&#xff0c;午饭是藿香正气水拌冰水。这场总体下来中规中矩吧。 WEB-welcome-BREAK CtrlU拿到flag WEB-submit-BREAK 文件上传&#xff0c;简单…

sql server 非sa账号配置发布订阅

如果有些源端环境&#xff0c;sa账号被禁用&#xff0c;或者有其他问题&#xff0c;那可以按以下步骤操作。 使用高权限账户登录&#xff0c;另外需要拥有源端windows用户管理员的账号和密码 表发布订阅成功的前提&#xff1a;发布的表必须有主键。 创建一个专门用于发布订阅的…

卤货商家配送小程序商城是怎样的模式

无论生意大小、打造品牌都是必要的一步&#xff0c;只要货品新鲜、味道高、性价比高&#xff0c;其新客转化/老客复购数量都不少&#xff0c;卤货种类多且复购多个单独/聚会场景&#xff0c;以同城主要经营&#xff0c;也有部分品牌有外地食品配送需要。 想要进一步品牌传播、…

多线程与高并发- Synchronized锁

简介 synchronized 是 Java 语言的一个关键字&#xff0c;它允许多个线程同时访问共享的资源&#xff0c;以避免多线程编程中的竞争条件和死锁问题。synchronized可以用来给对象或者方法进行加锁&#xff0c;当对某个对象或者代码块加锁时&#xff0c;同时就只能有一个线程去执…

Spring Cache常见问题解决

目录 一 报错:Null key returned for cache operation 二 报错&#xff1a;类型转换异常 三 取出的数据为null 一 报错:Null key returned for cache operation 这里报错有两种情况&#xff1a; 第一&#xff0c;如果你在新增的方法上使用Cacheable注解&#xff0c;那么肯定是…

chat使用

1.问题&#xff0c;Youve hit your usage limit. Please try again later. 2024年6月22号&#xff0c;提示达到使用限制次数。 一直用免费的&#xff0c;第一次遇见这个提示。 据说月初会重置。 感觉这个月也没有用多少次&#xff0c;怎么就达到限制了。 还有就是&#…

godot所有2D节点介绍

五十个2D节点介绍 2D节点介绍 前言一、Node2D二、sprite2D三、AnimatedSprite2D四、Camera2D五、PhysicsBody2D六、 RigidBody2D七、CharacterBody2D八、StaticBody2D九、joint2D十、DampedSpringJoint2D十一、GrooveJoint2D十二、PinJoint2D十三、Area2D十四、AnimatableBody2…

day3-xss漏洞(米斯特web渗透测试)

day3-xss漏洞&#xff08;米斯特web渗透测试&#xff09; XSSXss种类三种反射型1.反射型xss2.存储型xss3.DOM型xss XSS Xss有一部分是前端的有一部分不是前端的&#xff0c;我们来看一下&#xff0c;昨天的HTML注入修复方法应灵活使用。 HTML注入是注入一段HTML&#xff0c;那…

android studio 模拟器文件查找

android studio 模拟器文件查找 使用安卓模拟器下载文件后通常无法在系统硬盘上找到下载的文件&#xff0c;安卓 studio studio 其实提供了文件浏览工具&#xff0c;找到后可以直接使用 Android studio 打开 打开 Android studioview 菜单view > Tool Windows > Device…

三阶段复习

6.21 静态库与动态库 库有两种&#xff1a;静态库&#xff08;.a、.lib&#xff09;和动态库&#xff08;.so、.dll&#xff09;。所谓静态、动态是指链接。静态库在链接期把整个库文件都拷贝到可执行文件中&#xff0c;而动态库在链接期只是把索引文件拷贝到可执行文件中&…

数据结构~~时间、空间复杂度

目录 一、什么是数据结构 什么是算法 算法的复杂度 二、时间复杂度 三、空间复杂度 四、总结 一、什么是数据结构 数据结构(Data Structure)是计算机存储、组织数据的方式&#xff0c;指相互之间存在一种或多种特定关系的 数据元素的集合。 数据结构关注的是数据的逻辑结…

爬虫笔记14——爬取网页数据写入MongoDB数据库,以爱奇艺为例

下载MongoDB数据库 首先&#xff0c;需要下载MongoDB数据库&#xff0c;下载的话比较简单&#xff0c;直接去官网找到想要的版本下载即可&#xff0c;具体安装过程可以看这里。 pycharm下载pymongo库 pip install pymongo然后在在python程序中我们可以这样连接MongoDB数据库…

继电器十大品牌供应商

继电器是常用的元器件之一&#xff0c;如下是优秀供应商。 继电器品牌-中间继电器品牌-安全继电器品牌-固态继电器哪个品牌比较好-Maigoo品牌榜

【html】用html+css模拟Windows右击菜单

效果图&#xff1a; 在这个示例中&#xff0c;我为每个.second-list添加了一个.sub-menu的<div>&#xff0c;它包含了子菜单项。当鼠标悬停在.second-list上时&#xff0c;.sub-menu会显示出来。你可以根据需要调整这个示例以适应你的具体需求。 记住&#xff0c;这只是…