1.1 数据采集总览

news2024/11/25 4:46:30

正所谓巧妇难为无米之炊,数据采集是数据处理的第一步。

什么是数据采集

数据采集,也称为数据收集,是将原始数据从各种来源获取并存储起来的过程。这个过程是数据分析和数据仓库建设的第一步,涉及到从不同的数据源中提取数据,这些数据源可能包括但不限于:

  1. 在线事务处理系统(OLTP):这些系统通常用于日常业务操作,如销售、库存管理等。
  2. 日志文件:服务器、应用程序或用户活动的日志。
  3. 传感器:在物联网(IoT)环境中,传感器可以收集温度、湿度、位置等数据。
  4. 社交媒体:从社交媒体平台收集用户生成的内容。
  5. 在线调查:通过在线问卷收集用户反馈和意见。
  6. 公共数据集:政府或组织发布的数据集。

数据采集的关键步骤包括:

  • 识别数据需求:明确需要哪些数据以及数据的用途。
  • 选择数据源:确定数据来源,并评估其可靠性和相关性。
  • 设计数据采集方案:包括数据采集的频率、方法和工具。
  • 实施数据采集:使用自动化工具或手动方法收集数据。
  • 数据清洗:去除不完整、错误或无关的数据。
  • 数据存储:将采集到的数据存储在适当的数据库或数据仓库中。

数据采集是整个数据生命周期的起点,为后续的数据加工、分析和可视化提供基础。
在这里插入图片描述

常见的数据源

常见的数据源可以分为内部数据源和外部数据源两大类。以下是一些具体的数据源及其数据采集方法:

内部数据源

  1. 事务型数据库:如关系型数据库(MySQL, Oracle, SQL Server等),通过SQL查询提取数据。
  2. 操作日志:系统或应用程序的日志文件,可以通过日志分析工具或脚本提取信息。
  3. 内部文档:如Word文档、Excel表格等,可以通过自动化脚本或人工方式导入数据。
  4. 企业资源规划(ERP)系统:如SAP、Oracle EBS等,通过API或数据导出功能获取数据。
  5. 客户关系管理(CRM)系统:如Salesforce,通过API或数据导出功能获取客户和销售数据。

外部数据源

  1. 公共数据集:政府或研究机构发布的数据集,通常可以通过下载或API访问。
  2. 社交媒体:如Twitter、Facebook等,通过API获取公开的帖子、评论等数据。
  3. 网络爬虫:使用爬虫技术从网站抓取数据,需要遵守网站的robots.txt协议和版权法规。
  4. 市场调研公司:购买市场调研报告或数据集。
  5. 第三方API服务:如天气数据、地理位置数据等,通过API调用获取数据。
    在这里插入图片描述

数据采集方法

  1. 自动化脚本:编写脚本(如Python脚本)自动化数据提取过程。
  2. ETL工具:使用Extract, Transform, Load(ETL)工具来集成和转换数据。
  3. API调用:利用应用程序编程接口(API)从外部服务获取数据。
  4. 数据导入/导出:直接从数据库或应用程序导出数据,或将数据导入到数据仓库。
  5. 数据集成平台:使用数据集成平台来统一管理多个数据源的数据采集。
  6. 手动收集:对于小规模或非结构化数据,可能需要人工方式进行数据收集。

数据采集过程中,需要考虑数据的时效性、完整性、准确性和合规性。此外,数据采集还应遵循相关的数据保护法规和隐私政策。

常见数据采集方式和工具

从数据库采集数据可以通过多种方式和工具实现,以下是一些常见的方法和工具:

  1. SQL查询
    直接使用SQL语句从数据库中查询数据,并将结果导出为CSV、JSON或其他格式的文件。这是一种简单直接的方法,适用于数据量不大的情况。

  2. ETL工具
    ETL(Extract, Transform, Load)工具可以自动化地从关系型数据库中抽取数据,进行必要的转换,然后加载到目标系统。常见的ETL工具包括:

    • Kettle:一款开源的ETL工具,支持多种数据库和数据格式。
    • Informatica:一个强大的商业ETL工具,提供数据集成解决方案。
  3. 数据同步工具
    专门用于在不同系统间同步数据的工具,如:

    • Sqoop:Apache开源工具,主要用于在Hadoop与传统数据库间进行数据传输。
    • DataX:阿里巴巴开源的异构数据源离线同步工具,支持多种数据源。
  4. 日志采集工具
    虽然主要用于日志数据,但也可以用于数据库的变更日志采集,例如:

    • Flume:Apache的分布式、可靠、高可用的日志采集系统。
  5. 数据库中间件
    例如 Canal,它基于数据库增量日志解析,提供增量数据实时订阅和消费。

  6. 编程语言库
    使用特定编程语言的库来连接数据库并提取数据,例如Python的pandas库,Java的JDBC等。

  7. 数据库备份
    利用数据库的备份机制,如MySQL的mysqldump工具,获取数据的备份文件,然后进行处理。

  8. 数据库触发器和存储过程
    通过在数据库中设置触发器和存储过程,可以在数据变更时自动将数据同步到其他系统。

  9. 消息队列
    使用消息队列(如Kafka)结合数据库的日志订阅功能,实现实时数据采集。

  10. 第三方API服务
    如果数据库提供了API接口,可以通过API进行数据的采集。

每种方法和工具都有其适用场景和优缺点,选择合适的方式取决于数据量大小、实时性要求、系统兼容性等因素。
在这里插入图片描述

常见数据采集工具比较

从多个角度对常见的数据采集工具进行比较时,我们可以从以下几个维度来分析:使用场景、设计理念、优缺点等。以下是一些常见数据采集工具的比较:

  1. SeaTunnel:

    • 使用场景:实时数据处理、批量数据同步、大数据集成。
    • 优点:支持多种数据源,高性能、高稳定性,灵活的插件体系。
    • 缺点:相对较新,社区相比较成熟的项目较少。
  2. DataX:

    • 使用场景:离线数据同步、数据仓库构建。
    • 优点:稳定性好,经过阿里巴巴大规模数据同步场景验证,支持多种数据源,易于扩展。
    • 缺点:主要针对离线数据同步,不适合实时数据处理。
  3. Sqoop:

    • 使用场景:Hadoop数据导入/导出、数据迁移。
    • 优点:简单易用,支持多种关系型数据库。
    • 缺点:只限于Hadoop生态系统,不支持实时数据处理。
  4. Flume:

    • 使用场景:日志数据收集、数据聚合。
    • 优点:高可靠性,良好的扩展性。
    • 缺点:主要针对日志数据,配置相对复杂。
  5. Flink CDC:

    • 使用场景:实时数据同步、实时数据分析。
    • 优点:实时性强,结合了Flink的强大处理能力。
    • 缺点:学习曲线较陡,依赖Hadoop生态系统。
  6. Kettle:

    • 使用场景:数据仓库建模传统ETL工具。
    • 优点:开源,跨平台运行,数据抽取高效稳定。
    • 缺点:C/S客户端模式,开发和生产环境需要独立部署,任务的编写、调试、修改都在本地。
  7. Talend:

    • 使用场景:开源中间件解决方案,适用于大数据场景。
    • 优点:可运行于Hadoop集群之间,直接生成MapReduce代码,支持并发事务处理。
    • 缺点:需要专业知识进行操作和维护。
  8. Informatica:

    • 使用场景:企业级数据集成项目和企业集成方案。
    • 优点:高性能、高可扩展性、高可用性,支持多种数据源和应用。
    • 缺点:商业软件,可能需要购买许可证。
  9. Oracle Goldengate:

    • 使用场景:基于日志的结构化数据复制。
    • 优点:实现实时数据捕捉、变换和投递,数据同步保持亚秒级延迟。
    • 缺点:商业软件,可能涉及许可费用。
      当然,让我们将 Canal 也加入到数据采集工具的比较中:
  10. Canal:

  • 使用场景:Canal 主要用于实现对数据库增量日志的解析,提供近实时的数据订阅和消费。它适用于数据同步、数据迁移、实时数据备份、大数据处理和实时监控等场景。
  • 设计理念:Canal 模拟 MySQL slave 的交互协议,伪装成 MySQL slave ,向 MySQL master 发送 dump 协议,然后将获得的二进制数据流转为数据的变更信息。
  • 优点
    • 低延迟:Canal 提供了接近实时的数据变更流。
    • 可靠性:基于数据库的binlog,保证了数据的一致性和完整性。
    • 易用性:提供了客户端库,简化了数据订阅和处理的复杂性。
    • 扩展性:支持自定义的过滤器和数据处理器,方便进行数据转换和扩展。
  • 缺点
    • 依赖性:需要依赖于 MySQL 或 MariaDB 数据库的 binlog,对数据库的版本有一定要求。
    • 配置复杂度:相比于一些更简单的工具,Canal 的配置和部署可能更为复杂。
    • 社区活跃度:虽然 Canal 在中国有较高的使用率,但社区活跃度和文档完善度可能不如一些更流行的工具。

将 Canal 与其他工具进行比较时,可以看到每种工具都有其独特的优势和局限:

  • SeaTunnelFlink CDC 都支持实时数据处理,但 Flink CDC 更专注于与 Flink 生态系统的集成。
  • DataXSqoop 都是阿里巴巴开源的工具,但 DataX 支持更广泛的数据源,而 Sqoop 主要专注于 Hadoop 生态系统。
  • KettleTalend 提供了丰富的 ETL 功能,但 Talend 提供了更多的企业级特性和支持。
  • Informatica 是一个企业级的数据集成平台,提供全面的解决方案,但可能涉及更高的成本。
  • Oracle Goldengate 提供了高级的数据复制功能,但同样是一个商业产品,可能涉及许可费用。

在选择数据采集工具时,需要考虑数据源类型、数据实时性要求、系统可扩展性、技术栈兼容性以及成本等因素。

每种工具都有其特定的使用场景和优势,选择时需要根据具体需求、数据类型、实时性要求以及技术栈兼容性等因素综合考虑。

数仓建设中经常使用的数据同步工具

在离线数仓和实时数仓的场景中,从数据源同步数据到数仓,通常会使用以下几类工具:

离线数据同步工具:

  1. Apache Sqoop:

    • 用于在Hadoop和关系型数据库之间高效地传输数据,适合批量数据导入导出。
  2. DataX (阿里巴巴):

    • 异构数据源离线同步工具,支持多种数据源之间的数据同步。
  3. Informatica PowerCenter:

    • 企业级ETL工具,提供数据集成、清洗、转换等功能。
  4. Talend:

    • 开源集成软件,提供数据集成解决方案,支持大数据。
  5. Kettle:

    • 开源ETL工具,适用于数据抽取、转换、加载。
  6. Oracle Data Integrator (ODI):

    • 企业级数据集成工具,支持多种数据源和复杂的数据转换。

实时数据同步工具:

  1. Apache Kafka:

    • 作为流处理平台,可以捕获、处理和存储实时数据流。
  2. Apache Flink:

    • 流处理框架,支持事件驱动的实时数据流处理。
  3. Apache NiFi:

    • 数据流自动化系统,支持数据的实时移动和处理。
  4. Apache Storm:

    • 实时计算系统,用于处理无限数据流。
  5. Canal:

    • 用于捕获数据库的增量变化,并将变更实时输出到消息队列。
  6. Debezium:

    • 开源的变更数据捕获平台,可以实时监控数据库的变更。
  7. Apache Nifi:

    • 支持数据的实时流处理和数据管道的创建。
  8. StreamSets:

    • 提供了一个实时数据集成平台,支持数据的收集、转换和加载。
  9. Amazon Kinesis:

    • 由AWS提供,用于实时处理大规模、分布式数据流。
  10. Google Cloud Dataflow:

    • 由Google Cloud提供,是一个完全托管的实时数据流和批处理服务。

在实际应用中,选择哪种工具取决于具体的业务需求、数据源类型、数据量大小、实时性要求、技术栈兼容性以及成本等因素。例如,如果需要处理大量日志数据,可能会选择Flume进行数据采集;如果需要构建实时数仓,可能会使用Flink或Kafka进行数据流的处理和存储。

数据同步过程中需要注意的问题

数据同步过程中需要注意以下几个关键问题,以确保数据的准确性、完整性和系统的稳定性:

  1. 数据一致性
    确保同步过程中数据的一致性,避免数据丢失或重复。使用事务或日志来保证数据操作的原子性。

  2. 数据完整性
    验证数据在传输过程中是否完整,没有被截断或损坏。可以通过校验和或哈希值来验证数据的完整性。

  3. 数据格式和结构
    源数据和目标数据的格式及结构需要兼容。可能需要进行数据映射、转换或适配。

  4. 数据类型和精度
    注意数据类型转换时的精度问题,特别是数值类型和日期时间类型的转换。

  5. 同步延迟
    实时同步和近实时同步需要考虑数据到达目标系统的时间延迟。

  6. 并发控制
    在多用户或多系统访问同一数据源时,需要合理控制并发,避免更新冲突。

  7. 错误处理
    设计错误处理机制,如重试逻辑、异常捕获和报警通知,确保同步过程中的问题能够被及时发现和处理。

  8. 数据安全
    在数据传输过程中,确保数据的安全性,使用加密传输和安全协议。

  9. 网络稳定性
    网络问题可能导致数据同步中断,需要考虑网络波动对同步过程的影响。

  10. 系统资源
    数据同步可能占用大量系统资源,如CPU、内存、I/O和网络带宽,需要监控资源使用情况,避免影响源系统和目标系统的正常运行。

  11. 增量同步
    设计增量同步策略,只同步变更的数据,以减少数据传输量和提高同步效率。

  12. 数据清洗
    在同步前对数据进行清洗,去除无效或不合规的数据。

  13. 数据备份
    在同步前进行数据备份,以防同步失败导致数据丢失。

  14. 监控和日志
    实施监控和记录日志,以便于跟踪同步过程的状态和性能,以及进行问题诊断。

  15. 用户和权限管理
    确保只有授权用户才能访问和操作数据同步工具,防止数据泄露。

  16. 合规性和审计
    遵守数据保护法规和标准,进行数据同步的审计和合规性检查。

  17. 可扩展性和维护性
    选择可扩展的数据同步解决方案,以适应数据量增长和系统变更的需要,并确保系统的易维护性。

通过综合考虑这些问题,可以设计出一个健壮、可靠且高效的数据同步流程。

下一节我会结合具体的案例详细讲解一些数据同步工具的使用细节。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1852699.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

游戏高度可配置化(一)通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解

游戏高度可配置化(一)通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解 码客 卢益贵 ygluu 关键词:游戏策划 可配置化 模块化配置 数据引擎 条件系统 红点系统 一、前言 在插件式模块化软件开发当中,既要模块高度独…

MK的前端精华笔记

文章目录 MK的前端精华笔记第一阶段:前端基础入门1、(1)、(2)、 2、3、4、5、6、7、 第二阶段:组件化与移动WebAPP开发1、(1)、(2)、 2、3、4、5、6、7、 第三…

新能源燃气灶用的是什么燃料?无需燃料,电生明火

新能源燃气灶广义的讲就是用电生明火的烹饪灶具,如:电焰灶、电燃灶或电火灶,无需任何燃料和氧气助燃;而狭义上讲是采用出电能以外的一切新燃料烹饪灶具,如:高功率燃气灶、生物合成油灶等。在厨房革命的浪潮…

C++系列-String(一)

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” string是用于字符串,可以增删改查 首先,我们来看一下string的底层 接下来,我们来看一下string的常用接口有哪些: #define _CRT_S…

双非本,3年时间从外包到阿里P6(Android岗),看我是怎么逆袭成功的?

而在小公司,因为我也在小公司呆过,所以我有最直接的感受。整个部门技术人员没几个,我又大学刚毕业,带我的人,问啥啥不会,只有一个大佬,跳槽来的,是我们技术总监,有问题谁…

stm32学习笔记---新建工程步骤和点灯演示

目录 STM32的三种开发方式 基于寄存器的方式 基于库函数的方式 基于Hal库的方式 固件库介绍 新建基于标准库的工程步骤 配置寄存器来完成点灯操作 添加库函数来完成点灯操作 添加库函数 开始点灯操作 第一步:使能时钟 第二步:配置端口模式 …

如何降低MCU系统功耗?

大家在做MCU系统开发的时候,是否也碰到过降低MCU系统功耗的需求? MCU系统整板功耗是个综合的数据,包括MCU功耗以及外部器件功耗,在此我们主要介绍如何降低MCU的功耗: 可以在满足应用的前提下,降低MCU的运…

MySQL之复制(十三)

复制 复制的问题和解决方案 在主-主复制结构总写入两台主库 试图向两台主库写入并不是一个好主意,如果同时还希望安全地写入两台主库,会碰到很多问题,有些问题可以解决,有些则很难。一个专业人员可能需要经历大量的教训才能明白…

2024 年值得推荐的 10 款 iPhone 数据恢复软件

iPhone 从来都不是一个简单的打电话电话。它就像一台微型电脑,让我们互相联系、拍照、拍视频、发邮件、看文档、看书。然而,随着它成为日常生活的必需品,我们总是容易因各种原因丢失数据,如删除、恢复出厂设置、iOS 错误、文件同步…

Day11 —— 大数据技术之Spark

Spark快速入门系列 Spark的概述什么是Spark?Spark的主要特点Spark的主要组件 Spark安装Spark三种运行模式Spark Standalone架构Spark Standalone的两种提交方式Spark On YARN架构 RDD算子转化算子行动算子 Spark RDDRDD的创建从对象集合创建RDD从外部存储创建RDD Sp…

Apollo9.0 PNC源码学习之Planning模块(一)—— 规划概览

0 前言 规划本质就是搜索问题,数学角度来看就是寻找函数最优解 规划模块复杂的就是相关的逻辑处理和过程计算 对于规划的三维问题,目前解决方案:降维+迭代 将SLT问题分解为ST和SL二维优化问题:在一个维度优化之后,再另一个维度再进行优化,最后整合成三维的轨迹。 虽然降…

Linux常用命令(15)—grepsed命令(有相关截图)

写在前面: 最近在学习Linux命令,记录一下学习Linux常用命令的过程,方便以后复习。仅供参考,若有不当的地方,恳请指正。如果对你有帮助,欢迎点赞,关注,收藏,评论&#xf…

【2024.6.23】今日 IT 速递 | 亚布力创新年会热点新闻盘点

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

细胞核的分割与分类模型·hover net| 补充文档

小罗碎碎念 这期推文算是hover net系列的一个补充文档,把几个非常重要的脚本拿出来单独做了一个分析,感兴趣的自取。 extract_patches.pyconfig.pydataset.pyopt.pyrun_infer.py 一、extract_patches.py 1-1:加载和处理图像数据集 注意 da…

53【场景作图】纵深感

1 想清楚什么是前 什么是后 如果背景虚化,就不要处理地很平面,如果很平面,就留一个清晰的边缘 2 重叠 遮挡 被遮挡的物体会更远

如何让表格标题栏具有粘性?

让表格标题栏具有粘性 什么意思呢? 就是当表格的内容(行数)比较多的时候, 滚动屏幕,看下面的内容的时候, 表格标题栏可以一直显示在屏幕最上方, 以前呢, 我会通过JSCSS 的 pos…

开发一个python工具,pdf转图片,并且截成单个图片,然后修整没用的白边及循环遍历文件夹全量压缩图片

今天推荐一键款本人开发的pdf转单张图片并截取没有用的白边工具 一、开发背景: 业务需要将一个pdf文件展示在前端显示,但是基于各种原因,放弃了h5使用插件展示 原因有多个,文件资源太大加载太慢、pdf展示兼容性问题、pdf展示效果…

基于nsight_compute进行kernel性能分析

当利用nsight进行性能分析时,当涉及到内核级别的性能分析时,nvidia提供了系统级别(nsight system),和内核级别的性能分析工具(nsight compute)。 其中,内核级别的性能分析,可以检查kernel实现的…

apollo规划架构

算法的基本架构 我们在最开始直接给出规划决策算法架构框图,然后一一介绍每个框图结构的细节: 模块的入口是 PlanningComponent,在 Cyber 中注册模块,订阅和发布消息,并且注册对应的 Planning 类。Planning 的过程之前…

基于SpringBoot+Vue教材订购系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…