昇思25天学习打卡营第4天 | 数据变换

news2025/3/11 6:35:39
内容介绍:通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过`map`方法传入,实现对指定数据列的处理。

具体内容:

1. 导包

import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

2. Compose

Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

train_dataset = MnistDataset('MNIST_Data/train')

image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)

train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

3. Vision Transforms

mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了Rescale、Normalize和HWC2CHW变换。

Rescale

Rescale变换用于调整图像像素值的大小,包括两个参数:

- rescale:缩放因子。
- shift:平移因子。

random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)

rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)

4. Normalize

Normalize变换用于对输入图像的归一化,包括三个参数:

- mean:图像每个通道的均值。
- std:图像每个通道的标准差。
- is_hwc:bool值,输入图像的格式。True为(height, width, channel),False为(channel, height, width)。

normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)

5. HWC2CHW

HWC2CHW变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CHW格式需求时,可使用该变换进行处理。

这里我们先将前文中`normalized_image`处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。

hwc_image = np.expand_dims(normalized_image, -1)
hwc2chw = vision.HWC2CHW()
chw_image = hwc2chw(hwc_image)
print(hwc_image.shape, chw_image.shape)

6. Text Transforms

mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。

首先我们定义三段文本,作为待处理的数据,并使用`GeneratorDataset`进行加载。

texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')

7. PythonTokenizer

分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的`PythonTokenizer`举例,此Tokenizer允许用户自由实现分词策略。随后我们利用`map`操作将此分词器应用到输入的文本中,对其进行分词。

def my_tokenizer(content):
    return content.split()

test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

8. Lookup

`Lookup`为词表映射变换,用来将Token转换为Index。在使用`Lookup`前,需要构造词表,一般可以加载已有的词表,或使用`Vocab`生成词表。这里我们选择使用`Vocab.from_dataset`方法从数据集中生成词表。

vocab = text.Vocab.from_dataset(test_dataset)

获得词表后我们可以使用`vocab`方法查看词表。

print(vocab.vocab())

生成词表后,可以配合`map`方法进行词表映射变换,将Token转为Index。

test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))

9. Lambda Transforms

Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:

test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))

可以看到`map`传入Lambda函数后,迭代获得数据进行了乘2操作。

我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))

print(list(test_dataset.create_tuple_iterator()))

数据变换是深度学习中不可或缺的一环,它直接影响到模型的训练效果和泛化能力。MindSpore提供了丰富的数据变换方法,包括面向图像、文本、音频等不同数据类型的Transforms,这大大减轻了我们在数据预处理上的工作负担。特别是对于那些需要复杂数据增强的任务,MindSpore的Compose功能能够轻松地将多个数据增强操作组合起来,形成一个完整的数据预处理流程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1851633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

书生·浦语大模型LagentAgentLego智能体应用搭建 第二期

文章目录 智能体概述智能体的定义智能体组成智能体范式 环境配置Lagent:轻量级智能体框架实战Lagent Web Demo用 Lagent 自定义工具 AgentLego:组装智能体“乐高”直接使用AgentLego作为智能体工具使用 用 AgentLego 自定义工具 智能体概述 智能体的定义…

gbase8s获取表的serial字段下一个insert序列值

serial字段,有个函数可以获取到最后插入的序列值,但是好像只能获取到当前会话最后一次插入的序列值,不论是SELECT dbinfo(sqlca.sqlerrd1) FROM dual;,还是select dbinfo(bigserial) from dual;,或者select dbinfo(ser…

点击旋转箭头样式

实现效果&#xff1a; html界面&#xff0c;主要通过isdown来控制箭头是上还是下 <el-popoverplacement"bottom"trigger"click":visible-arrow"false"v-model"isdown"popper-class"user-popover"><divslot"re…

ICMAN触摸芯片——防水触摸

ICMAN触摸芯片之防水触摸触摸按键控制开关和调节挡位和切换不同模式 淋水状态下&#xff0c;触摸按键反应灵敏&#xff0c;不误触发&#xff0c; ICMAN触摸芯片稳定性与抗干扰能力强&#xff0c; 可以轻松解决家电触摸感应不灵敏和有水误触发的问题&#xff0c; 从而有效实…

如何利用AI简历工具为实习简历加分?

时间匆匆&#xff0c;我们又迎来了毕业季。大学生活丰富多彩&#xff0c;学业同样重要。毕业答辩对于每位大学生来说都是一道重要的门槛。回想起那些为了答辩准备而熬夜、焦虑的日子&#xff0c;那份努力至今难忘。 虽然答辩的准备工作可能相当繁琐&#xff0c;但幸运的是&…

数学建模系列(2/4):建模入门

目录 引言 1. 如何开始数学建模 1.1 选择和描述问题 1.2 提出基本假设 1.3 确定模型类型 2. 建模的数学基础 2.1 线性代数基础 矩阵运算 线性方程组的解法 2.2 微分方程基础 常微分方程 偏微分方程 2.3 统计与概率基础 描述性统计 概率基础 3. 模型的求解方法 …

Linux学习笔记:前言与操作系统的初识【1】

前言 为什么学习Linux 作为当下最流行的操作系统之一&#xff0c;学会如何使用和操作Linux操作系统也就是每位计算机学者的看家必备技能了。其次呢&#xff0c;本人受Linux的创始人林纳斯的影响太深了&#xff0c;觉得这个人太了不起了&#xff0c;而且人家大学里就自研开发出…

Block-Max-Maxscore(Lucene 9.10.0)

Lucene中基于论文&#xff1a;Optimizing Top-k Document Retrieval Strategies for Block-Max Indexes 实现了Block-Max-Maxscore (BMM) 算法&#xff0c;用来优化关键字之间只有OR关系&#xff0c;并且minShouldMatch < 1时的查询。比如有查询条件为&#xff1a;term1 OR …

2024/6/22 英语每日一段

France is the only country in Europe with an EPR that covers the textile industry. Critics say the policy does little for “end-of-line” countries such as Ghana because the fee paid by clothing producers is low at just €0.06 for each item, and the funds …

小米红米全机型TWRP下载刷入教程-获取root权限--支持小米14/红米K7Pro/红米Turbo3等机型

刷机注意&#xff1a; 本教程为小米红米全机型专用TWRP_Recovery合集&#xff0c;ROM乐园独家首发整理。请确保你的电脑能正确连接你的手机&#xff0c;小米红米手机需要解锁BL&#xff0c;请参照下面教程 小米MIUI澎湃OS解锁BL教程&#xff1a;小米手机官方解锁BootLoader图文…

低浓度废锡回收后的几种处理方法

低浓度废锡回收后&#xff0c;处理方法的选择对于资源的有效利用和环境保护具有重要意义。以下是几种常见的低浓度废锡回收后的处理方法&#xff0c;结合相关数字和信息进行详细介绍&#xff1a; 一、化学法回收 化学法回收是低浓度废锡回收的重要方法之一。其中&#xff0c;酸…

FlowUs AI的使用教程和使用体验

FlowUs AI 使用教程 FlowUs AI特点使其成为提升个人和团队生产力的有力工具&#xff0c;无论是在学术研究、内容创作、技术开发还是日常办公中都能发挥重要作用。现在来看看如何使用FlowUs AI吧&#xff01; 注册与登录&#xff1a;首先&#xff0c;确保您已经注册并登录FlowU…

OpenCV中的圆形标靶检测——findCirclesGrid()(三)

前面说到cv::findCirclesGrid2()内部先使用SimpleBlobDetector进行圆斑检测,然后使用CirclesGridClusterFinder算法类执行基于层次聚类的标靶检测。如下图所示,由于噪声的影响,SimpleBlobDetector检出的标靶可能包含噪声。 而CirclesGridClusterFinder算法类会执行基…

【for循环】最大跨度

【for循环】最大跨度 时间限制: 1000 ms 内存限制: 65536 KB 【题目描述】 【参考代码】 #include <iostream> using namespace std; int main(){ int n;int max 0, min 100;cin>>n;for(int i1; i<n; i1){int a;cin>>a;if(a>max){max a;}i…

Android使用MPAndroidChart 绘制折线图

效果图&#xff1a; 1.导入依赖 1.1在项目根目录下的build.gradle文件中添加代码&#xff08;注意不是app下的build.gradle&#xff09;&#xff1a; maven { url https://jitpack.io } 1.2在app下的build.gradle中的依赖下添加&#xff1a; implementation com.github.PhilJa…

邀请函 | 人大金仓邀您相聚第十三届中国国际国防电子展览会

盛夏六月 备受瞩目的 第十三届中国国际国防电子展览会 将于6月26日至28日 在北京国家会议中心盛大举办 作为数据库领域国家队 人大金仓 将携系列行业解决方案 和创新实践成果亮相 期待您莅临指导 ↓↓↓↓↓↓ CIDEX 2024 中国国际国防电子展览会&#xff08;简称CIDEX&#xf…

信息安全基础知识(完整)

信息安全基础知识 安全策略表达模型是一种对安全需求与安全策略的抽象概念表达&#xff0c;一般分为自主访问控制模型&#xff08;HRU&#xff09;和强制访问控制模型&#xff08;BLP、Biba&#xff09;IDS基本原理是通过分析网络行为&#xff08;访问方式、访问量、与历史访问…

力扣每日一题 6/19 排序+动态规划

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 2713.矩阵中严格递增的单元格数【困难】 题目&#xff1a; 给你一个下标从…

PHPMailer发送的中文内容乱码如何解决

一&#xff1a; PHPMailer sdk 文件中有个设置默认编码的位置&#xff1a; vendor/phpmailer/phpmailer/src/PHPMailer.php 二&#xff1a; 实际业务代码中&#xff1a; require /sdk/PHPMailer/vendor/autoload.php;$mail new PHPMailer(true);try {//Server settings$mai…

AST小工具|编写一个通用的js混淆代码美化工具

关注它&#xff0c;不迷路。 本文章中所有内容仅供学习交流&#xff0c;不可用于任何商业用途和非法用途&#xff0c;否则后果自负&#xff0c;如有侵权&#xff0c;请联系作者立即删除&#xff01; 一.问题 如题&#xff0c;如何编写一个通用的js混淆代码美化工具&…