【PyTorch】【机器学习】图片张量、通道分解合成和裁剪

news2024/11/25 20:26:54

一、导入所需库

from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt

二、读取图片

pic = np.array(Image.open('venice-boat.jpg'))

上述代码解释:先用Image.open()方法读取jpg格式图片,再用np.array()方法将图片转成numpy数组(ndarray)格式。

三、建立张量

图片在PyTorch中以3维张量表示。以下代码将图片转换成张量形式:

pic_tensor = torch.from_numpy(pic)

打印张量数据内容:

print(pic_tensor)

输出:

tensor([[[ 47, 138, 221],  # 每个像素点的RGB颜色值
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 89, 149, 221],
         [ 87, 150, 221],
         [ 86, 149, 220]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 88, 148, 220],
         [ 85, 148, 219],
         [ 85, 148, 219]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 84, 147, 218],
         [ 84, 147, 218],
         [ 83, 146, 217]],

        ...,

四、通过张量对图片进行操作

(注:在以下的各个操作下,还需要用plt.show()语句才能将图片输出到屏幕上。)

1、打印整张图片

plt.imshow(pic)

在这里插入图片描述

2、分RGB通道打印图片

输出通道1:
plt.imshow(pic_tensor[:, :, 0].numpy())

在这里插入图片描述

输出通道2:
plt.imshow(pic_tensor[:, :, 1].numpy())

在这里插入图片描述

输出通道3:
plt.imshow(pic_tensor[:, :, 2].numpy())

在这里插入图片描述
注意: 三通道并不是简单的算术叠加,例如以下代码的输出和原图大相径庭:

from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt


pic_1 = np.array(Image.open('Channel_1.jpg'))
pic_2 = np.array(Image.open('Channel_2.jpg'))
pic_3 = np.array(Image.open('Channel_3.jpg'))

pic_tensor_1 = torch.from_numpy(pic_1)
pic_tensor_2 = torch.from_numpy(pic_2)
pic_tensor_3 = torch.from_numpy(pic_3)

pic_tensor = pic_tensor_1 + pic_tensor_2 + pic_tensor_3
plt.imshow(pic_tensor.numpy())

plt.show()

输出图片:

在这里插入图片描述

3、裁剪图片

对图片张量的裁剪在其前2个维度上进行(第3个维度为颜色通道),示例代码如下:

plt.imshow(pic_tensor[50: 1050, 400: 800, :].numpy())

裁剪结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1849336.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

图解Transformer

图解Transformer Transformer模型是在论文《Attention is All You Need》中提出的。它的TensorFlow实现作为Tensor2Tensor包的一部分是可用的。哈佛大学的自然语言处理小组创建了一个指南,用PyTorch实现对论文进行了注释。在这篇文章中,我们将尝试简化一…

基于CST的连续域束缚态(BIC)设计与机制研究

关键词:太赫兹,超表面,连续域束缚态,CST,高Q 束缚态的概念最先出现于量子力学中,当粒子被势场约束在特定的区域内运动,即在无限远处波函数等于零的态叫束缚态,例如势阱中的粒子就处…

MySQL操作语句练习【经典20题】

emp 表视图 dept 表视图 题目 1.请从表EMP中查找工种是职员CLERK或经理MANAGER的雇员姓名、工资。 2.请在EMP表中查找部门号在10-30之间的雇员的姓名、部门号、工资、工作。 3.请从表EMP中查找姓名以J开头所有雇员的姓名、工资、职位。 4.请从表EMP中查找工资低…

EM算法数学推导

EM算法可以看李航老师的《机器学习方法》、机器学习白板推导、EM算法及其推广进行学习。下文的数学推导出自“南瓜书”,记录在此只为方便查阅。

qt 简单实验 读取json格式的配置文件

1.概要 2.代码 //#include "mainwindow.h"#include <QApplication> #include <QFile> #include <QJsonDocument> #include <QJsonObject> #include <QDebug> //读取json数据的配置文件QJsonObject readJsonConfigFile(const QString …

python-邮票组合问题

[题目描述] 某人有四张3分的邮票和三张5分的邮票&#xff0c;用这些邮票中的一张或若干张可以得到多少种不同的邮资&#xff1f;输入格式&#xff1a; 此题无输入。输出格式&#xff1a; 输出可以得到不同邮资的数量。 样例输入 无样例输出 19数据范围&#xff1a; 对于100%的…

Stable Diffusion 3 文本生成图像 在线体验 原理分析

前言 本文分享使用Stable Diffusion 3实现文本生成图像&#xff0c;可以通过在线网页中免费使用的&#xff0c;也有API等方式访问。 同时结合论文和开源代码进行分析&#xff0c;理解其原理。 Stable Diffusion 3是Stability AI开发的最新、最先进的文本生成图像模型&#x…

Linux常用命令(16)—awk命令(有相关截图)

写在前面&#xff1a; 最近在学习Linux命令&#xff0c;记录一下学习Linux常用命令的过程&#xff0c;方便以后复习。仅供参考&#xff0c;若有不当的地方&#xff0c;恳请指正。如果对你有帮助&#xff0c;欢迎点赞&#xff0c;关注&#xff0c;收藏&#xff0c;评论&#xf…

秋招突击——6/21——新作{两两交换链表中的节点,K个一组反转链表}

文章目录 引言新做删除有序数组中的重复项个人实现 K 个一组翻转链表个人实现参考代码 总结 引言 上午完全去听讲座了&#xff0c;听了三场&#xff0c;拿了三个讲座单&#xff0c;从九点一直到十二点。笔记本电脑插电才能用&#xff0c;就没带&#xff0c;所以没有进行复习。…

GIT回滚

1. 使用 git revert git revert 命令会创建一个新的提交&#xff0c;这个提交会撤销指定提交的更改。这通常用于公共分支&#xff08;如 main 或 master&#xff09;&#xff0c;因为它不会重写历史。 git revert HEAD # 撤销最近的提交 # 或者指定一个特定的提交哈希值 …

一句话、10秒,我用Claude 3.5 Sonnet生成了完整的俄罗斯方块!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

大模型项目落地时,该如何估算模型所需GPU算力资源

近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。 不喜欢过程的可以直接 跳到HF上提供的模型计算器 要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。 大模型的规模、参数的理解…

没等来百度惊艳的All in AI,却等来了国产之光的盘古大模型 5.0

6月21日&#xff0c;华为开发者大会&#xff08;HDC 2024&#xff09;在广东东莞正式开幕。盘古大模型5.0的更新&#xff0c;也是此次HDC2024的另一项重头戏。在过去的一年中&#xff0c;盘古大模型正在疯狂向各行各业渗透。 此次&#xff0c;华为方面展示了他们在具身智能、医…

细说MCU输出两路PWM波形及改变占空比的实现方法

目录 一、硬件及工程 二、建立工程 三、代码修改 四、下载运行 五、改变PWM波形占空比 1、定义两个全局变量 2、启动定时器 3、重写TIM3中断回调函数 六、下载并运行 一、硬件及工程 文章依赖的硬件及工程配置参考本文作者的其他文章&#xff1a;细说ARM MCU的串口接…

win制作git局域网仓库,克隆

仓库目录制作成共享文件 共享目录\USER-20230725LO 然后win使用git克隆\USER-20230725LO\git\wbrj

天马学航——智慧教务系统(移动端)开发日志八

天马学航——智慧教务系统(移动端)开发日志八 日志摘要&#xff1a;完成了对用户主界面的优化&#xff0c;再次优化数据库缓存&#xff0c;使数据库读写分离 优化主界面 优化用户界面&#xff0c;使界面看起来更加亲切贴合 主要源码 build() {Row() {Column({space:30}) {Te…

【Java】已解决java.io.InterruptedIOException异常

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决java.io.InterruptedIOException异常 在Java中&#xff0c;java.io.InterruptedIOException异常通常与I/O操作被中断有关。这种中断可能由多种因素引起&#xff0c;如线程被中…

发布微信小程序需要icp证吗?

微信小程序需要办理ICP许可证吗&#xff1f; 微信小程序需不需要办理ICP许可证&#xff0c;具体要看你的小程序类目是什么&#xff0c;还要看你的小程序具体是做什么的&#xff1f; 根据《互联网信息服务管理办法》 第四条 国家对经营性互联网信息服务实行许可制度&#xff1b…

超级干货 !数据平滑9大妙招(python版)_python指数平滑预测案例

大家好&#xff0c;对数据进行平滑处理的方法有很多种&#xff0c;具体的选择取决于数据的性质和处理的目的。如果你对Python感兴趣&#xff0c;想要学习pyhton&#xff0c;这里给大家分享一份**Python全套学习资料**&#xff0c;都是我自己学习时整理的&#xff0c;希望可以帮…

体验一下 Claude 3.5 Sonnet

体验一下 Claude 3.5 Sonnet 0. 引言1. Artifacts - 使用 Claude 的新方式2. 体验一下 Claude 3.5 Sonnet 0. 引言 2024年6月21日&#xff0c;Anthropic 推出 Claude 3.5 Sonnet&#xff0c;这是即将推出的 Claude 3.5 型号系列中的第一个版本。 Claude 3.5 Sonnet 提高了行业…