数据仓库的实际应用示例-广告投放平台为例

news2024/12/22 12:53:33

数据仓库的数据分层通常包括以下几层:

  1. ODS层:存放原始数据,如日志数据和结构化数据。
  2. DWD层:进行数据清洗、脱敏、维度退化和格式转换。
  3. DWS层:用于宽表聚合值和主题加工。
  4. ADS层:面向业务定制的应用数据层。
  5. DIM层:一致性维度建模,包括低基数和高基数维度数据。

image.png

为了更好地理解数据仓库的各个方面,我们以一个广告投放平台为例,详细说明各个层级的数据处理和使用,并附带一些代码示例。

1. ODS层

ODS(Operational Data Store)层存放的是原始数据。比如,广告点击日志数据。

示例数据

{
    "log_id": "12345",
    "user_id": "67890",
    "ad_id": "54321",
    "timestamp": "2023-06-21T12:00:00Z",
    "action": "click",
    "cost": 0.5
}
2. DWD层

DWD(Data Warehouse Detail)层进行数据清洗、脱敏、维度退化和格式转换。

数据清洗代码示例(使用PySpark):

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, from_unixtime

# 创建SparkSession
spark = SparkSession.builder.appName("DWD Layer").getOrCreate()

# 读取ODS层数据
ods_data = spark.read.json("hdfs://path/to/ods/data")

# 数据清洗
dwd_data = ods_data.withColumn("timestamp", from_unixtime(col("timestamp")))

# 写入DWD层
dwd_data.write.mode("overwrite").json("hdfs://path/to/dwd/data")
3. DWS层

DWS(Data Warehouse Service)层用于宽表聚合和主题加工。

宽表聚合代码示例

from pyspark.sql.functions import sum

# 聚合用户点击行为数据
dws_data = dwd_data.groupBy("user_id").agg(sum("cost").alias("total_cost"))

# 写入DWS层
dws_data.write.mode("overwrite").json("hdfs://path/to/dws/data")
4. ADS层

ADS(Application Data Store)层面向业务定制的应用数据层。比如,计算每个广告的总点击次数。

业务定制数据处理代码示例

from pyspark.sql.functions import count

# 计算每个广告的总点击次数
ads_data = dwd_data.groupBy("ad_id").agg(count("action").alias("click_count"))

# 写入ADS层
ads_data.write.mode("overwrite").json("hdfs://path/to/ads/data")
5. DIM层

DIM(Dimension)层用于一致性维度建模。

维度建模示例

# 读取广告信息维度数据
ad_info = spark.read.json("hdfs://path/to/dim/ad_info")

# 读取ADS层数据
ads_data = spark.read.json("hdfs://path/to/ads/data")

# 关联广告信息维度数据
final_data = ads_data.join(ad_info, "ad_id")

# 写入最终数据
final_data.write.mode("overwrite").json("hdfs://path/to/final/data")

数据指标示例

数据指标分为原子指标、复合指标和派生指标。下面以广告点击数据为例说明各类指标的计算。

原子指标

# 原子指标:广告点击次数
ad_clicks = dwd_data.filter(col("action") == "click").count()
print(f"广告点击次数: {ad_clicks}")

复合指标

# 复合指标:点击率
total_impressions = dwd_data.filter(col("action") == "impression").count()
click_through_rate = ad_clicks / total_impressions
print(f"点击率: {click_through_rate}")

派生指标

# 派生指标:按天计算的点击次数
daily_clicks = dwd_data.filter(col("action") == "click").groupBy("date").count()
daily_clicks.show()

结论

通过以上示例代码,我们可以看到数据仓库各个层级的数据处理流程,以及如何定义和计算各种数据指标。这些规范和方法不仅帮助企业构建高效、可维护的数据仓库系统,还能为业务决策提供有力的数据支持。

希望这个简单的示例能够帮助读者更好地理解数据仓库的设计和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1847586.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从零入手人工智能(4)—— 逻辑回归

1.小故事 一家金融科技公司,公司的首席执行官找到团队提出了一个紧迫的问题:“我们如何提前知道哪些客户可能会违约贷款?” 这让团队陷入了沉思,经过激烈讨论团队中的数据分析师提议:“我们可以尝试使用逻辑回归来预测…

解决双击bootstrap.bat没有生成b2.exe文件

双击bootstrap.bat但是并没有没有生成b2.exe文件,会报如下错误: "cl" 不是内部或外部命令,也不是可运行的程序 或批处理文件。D:\cppsoft\boost_1_85_0\tools\build\src\engine>dir *.exe 驱动器 D 中的卷是 Data 卷的序列号是…

六、在Qt下通过PCL在VTK9.3.0下显示自己的pcd点云文件

前几天刚整理好VTK8.2.0,发现我们的项目使用的PCL自带的VTK是9.3.0的,脸黑了快 VTK8.2.0可参考该篇博文:五、在Qt下加载QVTKWidget控件(VTK8.2.0),生成Visual Studio项目,显示点云(C…

如何基于项目人力和管线方案选择FGUI和UGUI

1)如何基于项目人力和管线方案选择FGUI和UGUI 2)TMP字体出包丢失字体描边 3)如何将一张贴图经过Shader处理后的结果输出给另外一个Shader使用 4)为什么我的水这么干净,和UE教程里的有差别 这是第390篇UWA技术知识分享的…

ECharts Y轴倒置,X轴顶部,图表反向

1.配置: xAxis:{position: ‘top’} //让x轴在顶部 yAxis: { inverse:true} //让Y轴坐标为反向坐标 2.将数据的只转换成负值(不建议),显示的时候formatter里面在显示正值(不建议)

强化安全新篇章:韶关石油化工可燃气体报警器年检解析

韶关,这座位于广东省北部的城市,近年来在石油化工行业取得了显著的发展。 随着一批批大型石化企业的进驻和投产,韶关不仅成为了区域性的石化产业基地,也为地方经济带来了强劲的增长动力。 然而,随着石化产业的快速发…

使用asyncua模块的subscribe_data_change监控opcua的Server节点数据变化

报错信息如下; ERROR:asyncua.common.subscription:DataChange subscription created but handler has no datachange_notification method 上述报错原因在于创建监控句柄SubscriptionHandler类时,节点数据变化的函数名称有问题,不是默认的da…

【NLP练习】Transformer实战-单词预测

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 任务:自定义输入一段英文文本进行预测 一、定义模型 from tempfile import TemporaryDirectory from typing import Tuple from torch import nn…

DVWA 靶场 Open HTTP Redirect 通关解析

前言 DVWA代表Damn Vulnerable Web Application,是一个用于学习和练习Web应用程序漏洞的开源漏洞应用程序。它被设计成一个易于安装和配置的漏洞应用程序,旨在帮助安全专业人员和爱好者了解和熟悉不同类型的Web应用程序漏洞。 DVWA提供了一系列的漏洞场…

Nuxt快速学习开发---Nuxt3视图Views

Views Nuxt提供了几个组件层来实现应用程序的用户界面 默认情况下&#xff0c;Nuxt 会将app.vue文件视为入口点并为应用程序的每个路由呈现其内容 应用程序.vue <template> <div> <h1>Welcome to the homepage</h1> </div> </template> …

湖南科技大学24计算机考研情况,软工学硕考数二,分数线290分,录取均分321分!

湖南科技大学&#xff08;Hunan University of Science and Technology&#xff09;坐落在伟人故里、人文圣地湘潭&#xff0c;处于长株潭核心区域&#xff0c;比邻湘潭九华经济技术开发区&#xff08;国家级&#xff09;&#xff0c;是应急管理部、国家国防科技工业局与湖南省…

复分析——第6章—— Γ 函数和 ζ 函数(E.M. Stein R. Shakarchi)

第6章 Γ函数和Ζ函数(The Gamma and Zeta Functions) 毫不夸张地说&#xff0c;Γ函数和Ζ函数是数学中最重要的非初等函数之一。Γ函数在自然界中无处不在。它出现在大量计算中&#xff0c;并以分析中出现的大量恒等式为特征。对此的部分解释可能在于Γ函数的基本结构特性&…

Nginx HTTPS(证书) 部署实战

一、申请证书与认证 要搭建https服务首先需有SSL证书&#xff0c;证书通常是在第三方申请&#xff0c;在阿里云的安全服务中有SSL证书这一项&#xff0c;可以在里面申请免费的证书。也可以在自己电脑中生成&#xff0c;虽然也能完成加密&#xff0c;但是浏览器是不认可的&…

编译 CanMV 固件

前言 上一章节中已经搭建好了基于 CanMV 的 C 开发环境&#xff0c;这么一来便可以进行基于 C 语言和 FreeRTOS 的应用开发或者编译基于 MicroPython 语法的应用开发方式所需的 CanMV 固件&#xff0c;本 章就将带领读者体验一下 CanMV 固件的编译流程。 本章分为如下几个小节&…

Java面试题:mysql执行速度慢的原因和优化

Sql语句执行速度慢 原因 聚合查询 多表查询 表数据量过大查询 深度分页查询 分析 sql的执行计划 可以使用EXPLAIN或者DESC获取Mysql如何执行SELECT语句的信息 直接在select语句前加关键字explain/desc 得到一个执行信息表 信息字段分析 possible_keys:可能使用到的索…

云计算【第一阶段(18)】磁盘管理与文件系统

一、磁盘基础 磁盘&#xff08;disk&#xff09;是指利用磁记录技术存储数据的存储器。 磁盘是计算机主要的存储介质&#xff0c;可以存储大量的二进制数据&#xff0c;并且断电后也能保持数据不丢失。 早期计算机使用的磁盘是软磁盘&#xff08;Floppy Disk&#xff0c;简称…

海外社媒网站抓取经验总结:如何更高效实现网页抓取?

有效的网络抓取需要采取战略方法来克服挑战并确保最佳数据提取。让我们深入研究一些关键实践&#xff0c;这些实践将使您能够掌握复杂的网络抓取。 一、了解 Web 抓取检测 在深入探讨最佳实践之前&#xff0c;让我们先了解一下网站如何识别和抵御网络爬虫。了解您在这一过程中…

深度神经网络一

文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层&#xff08;Input Layer&#xff09;2. 隐藏层&#xff08;Hidden Layers&#xff09;3. 输出层&#xff08;Output Layer&#xff09;整体流程深度神经网络的优点深度神经…

[行业原型] 线上药房管理系统

​行业背景 据中国网上药店理事会调查报告显示&#xff1a;2011年&#xff0c;医药B2C的规模达到4亿元&#xff0c;仅出现5家销售额达5000万元的网上药店。而2011年医药行业的市场规模达到3718亿&#xff0c;线上药品的销售额还不到网下药店的一个零头&#xff0c;还有很大的发…

C++类基本常识

文章目录 一、类的默认方法二、类的成员变量初始化1 类的成员变量有三种初始化方法&#xff1a;2 成员变量初始化顺序3 const和static的初始化 三、C内存区域四、const和static 一、类的默认方法 C的类都会有8个默认方法 默认构造函数默认拷贝构造函数默认析构函数默认重载赋…