竞赛选题 LSTM的预测算法 - 股票预测 天气预测 房价预测

news2024/12/25 9:18:08

0 简介

今天学长向大家介绍LSTM基础

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

    
    future_target = 72
    x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,
                                                     TRAIN_SPLIT, past_history,
                                                     future_target, STEP)
    x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],
                                                 TRAIN_SPLIT, None, past_history,
                                                 future_target, STEP)

划分数据集

    
​    train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
​    train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
​    

    val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
    val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()


  

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
​        plt.figure(figsize=(12, 6))
​        num_in = create_time_steps(len(history))
​        num_out = len(true_future)
​    

        plt.plot(num_in, np.array(history[:, 1]), label='History')
        plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',
               label='True Future')
        if prediction.any():
            plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',
                     label='Predicted Future')
        plt.legend(loc='upper left')
        plt.show()
    for x, y in train_data_multi.take(1):
      multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

    
​    multi_step_model = tf.keras.models.Sequential()
​    multi_step_model.add(tf.keras.layers.LSTM(32,
​                                              return_sequences=True,
​                                              input_shape=x_train_multi.shape[-2:]))
​    multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
​    multi_step_model.add(tf.keras.layers.Dense(72))
​    

    multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

    
    multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                              steps_per_epoch=EVALUATION_INTERVAL,
                                              validation_data=val_data_multi,
                                              validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import tensorflow as tf
    plt.rcParams['font.sans-serif']=['SimHei']#显示中文
    plt.rcParams['axes.unicode_minus']=False#显示负号


def load_data():
test_x_batch = np.load(r’test_x_batch.npy’,allow_pickle=True)
test_y_batch = np.load(r’test_y_batch.npy’,allow_pickle=True)
return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):
    cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanh
    return cell

#定义lstm网络
def lstm_net(x,w,b,num_neurons):
    #将输入变成一个列表,列表的长度及时间步数
    inputs = tf.unstack(x,8,1)
    cells = [lstm_cell(units=n) for n in num_neurons]
    stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)
    outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)
    return tf.matmul(outputs[-1],w) + b

#超参数
num_neurons = [32,32,64,64,128,128]

#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))

#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)

#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())

if __name__ == '__main__':

    #开启交互式Session
    sess = tf.InteractiveSession()
    saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')

    #载入数据
    test_x,test_y = load_data()

    #预测
    predicts = sess.run(pred,feed_dict={x:test_x})
    predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准

    #可视化
    plt.plot(predicts,'r',label='预测曲线')
    plt.plot(test_y,'g',label='真实曲线')
    plt.xlabel('第几天/days')
    plt.ylabel('开盘价(归一化)')
    plt.title('股票开盘价曲线预测(测试集)')
    plt.legend()
	plt.show()
    #关闭会话
    sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

    
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import torch
    import torch.nn as nn
    from sklearn.preprocessing import MinMaxScaler
    import os


# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4 # 序列长度
n_feature = 12 # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。

# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)
 
trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):
    tmp_x = data[i:i+seq_length, :]
    tmp_y = data[i+seq_length, :]
    trainData_x.append(tmp_x)
    trainData_y.append(tmp_y)
 
# model
class Net(nn.Module):
    def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
        super(Net, self).__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.n_layer = n_layer
        self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)
 
    def forward(self, x):
        _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                      # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                      # n_direction根据是“否为双向”取值为1或2
        h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
        h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
        return h_out
 
train = True
if train:
    model = Net()
    loss_func = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    # train
    for epoch in range(EPOCH):
        total_loss = 0
        for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
            X = torch.tensor(X).float()
            X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
            output = model(X)       # output's shape (1,12)
            output = torch.squeeze(output)
            loss = loss_func(output, torch.tensor(trainData_y[iteration]))
            optimizer.zero_grad()   # clear gradients for this training iteration
            loss.backward()         # computing gradients
            optimizer.step()        # update weights
            total_loss += loss
 
        if (epoch+1) % 20 == 0:
            print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
    # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
    torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
 
else:
    # model = torch.load('flight_model.pth')
    model = Net()
    checkpoint = torch.load('checkpoint.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])
 
# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)
    X = torch.tensor(X).float()
    X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
    output = model(X)             # output's shape (1,12)
    output = torch.squeeze(output)
    predict.append(output.data.numpy())
 
# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')
 
data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')
 
plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1846578.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uni-app中的css3选择器使用

2.给 view 添加样式 .box view{ font-size: 40upx; color: #8A6DE9; } 3.想改变某一个view 样式 .box>view:nth-child(1){ background: #09BB07; } .box>view:nth-child(2){ background: red; } .box>view:nth-child(3){ background: yellow; } 注意&am…

MMDetection 目标检测 —— 环境搭建和基础使用

参考文档 开始你的第一步 — MMDetection 3.3.0 文档 依赖 步骤 0. 下载并安装 Anaconda。 步骤 1. 创建并激活一个 conda 环境。(我选择的是python3.10) conda create --name openmmlab python3.8 -y conda activate openmmlab 步骤 2. 基于 PyTo…

【算法基础】Newton求根法

文章目录 Newton求根法算法求解平方根 Newton求根法 1664年Newton提出了一种迭代求根的方法。这种方法有时也被叫做Raphson方法。虽然Newton更早发现了这种方法,但Raphson首先在自己的文章中介绍了这种方法。 该方法解决的问题如下。 给定一个方程: …

AXI学习笔记

文章目录 AXI口诀:AXI三种总线,三种接口,一个协议背景知识一、 AMBA:二、AXI2.1 通信协议与握手机制2.2 AXI协议特点2.3 三种AXI总线类型(AXI4、AXI4-lite、AXI4-stream)2.3.1 AXI通道(5通道&am…

CleanMyMac中文版2024官方正式版下载!你的电脑清洁专家!

CleanMyMac中文版,你的电脑清洁专家!✨🧵 你是否曾为电脑的卡顿和垃圾文件而烦恼?别担心,CleanMyMac中文版来帮你解决这些问题!这款神奇的软件不仅可以帮助你清理垃圾文件,还能优化系统性能&…

循环的三种写法

一、for(i): for (int i0;i< arrayList.size();i){System.out.println(arrayList.get(i));} 最基本的循环方法。 二、for-each: 又称加强for &#xff0c;更简单的遍历集合。 三、迭代器: 迭代器是调用Java中的Iterator接口&#xff0c;该接口定义了三个方法分别是hasNex…

AI助手,办公提效好工具!

随着人工智能AI技术的发展&#xff0c;AI工具已经成为我们提高工作效率的重要工具。无论是日常办公、学习还是生活娱乐&#xff0c;AI工具都能为我们提供支持和帮助。下面小编就来和大家分享几款AI助手&#xff0c;方便大家了解和使用AI工具。 1. Kimi智能助手 Kimi智能助手是…

fastadmin配合定时任务

一个系统单纯到linux本身的定时任务&#xff0c;是很不方便的&#xff0c;需要结合起来使用定时任务 - 便捷的后台定时任务管理 – 基于ThinkPHP和Bootstrap的极速后台开发框架 1.安装插件 2.配置宝塔定时任务 3.自己用工具生成规则即可:Cron - 在线Cron表达式生成器

Vue3.4新增的defineModel的使用

define-model的作用 在3.3及之前的版本&#xff0c;父子组件之间的通讯&#xff0c;一直都是靠props&#xff08;父传子&#xff09;和emit&#xff08;子传父&#xff09;来实现。而define-model整合了这两种方法&#xff0c;只需要在父组件中定义define-model的方法&#xf…

肇庆具有资质等保机构有几家?在哪里?

在近期揭晓的“中国百强城市排行榜”中&#xff0c;广东省共有12个城市入选&#xff0c;其中包括肇庆。肇庆-山水之城&#xff0c;文化之韵&#xff0c;端砚之乡&#xff0c;岭南瑰宝&#xff0c;是一个非常有发展的城市&#xff0c;企业多多。这不不少肇庆企业在问&#xff0c…

MySQL——触发器(trigger)基本结构

1、修改分隔符符号 delimiter $$ $$可以修改 2、创建触发器函数名称 create trigger 函数名 3、什么样在操作触发&#xff0c;操作哪个表 after &#xff1a;……之后触发 before &#xff1a;……之后触发 insert &#xff1a;……之后触发 update &#xff1a;……之后触…

Flutter【组件】点击类型表单项

简介 flutter 点击表单项组件&#xff0c;适合用户输入表单的场景。 点击表单项组件是一个用户界面元素&#xff0c;通常用于表单或设置界面中&#xff0c;以便用户可以点击它们来选择或更改某些设置或输入内容。这类组件通常由一个标签和一个可点击区域组成&#xff0c;并且…

轻松ChatGPT的使用技巧,让你的生活更智能

ChatGPT&#xff0c;由OpenAI的GPT-3.5架构支持&#xff0c;已经彻底改变了我们与人工智能互动的方式。这个先进的语言模型被证明是一种多功能的工具&#xff0c;能够处理各种对话任务。不过&#xff0c;用户可以通过一些技巧和窍门&#xff0c;进一步提升使用ChatGPT的体验&am…

世界是软件定义的 - 正如硬件公司所证明的那样

很难相信&#xff0c;马克安德森&#xff08;Marc Andressen&#xff09;在13年前写下了他著名的博客&#xff0c;题为“软件正在吞噬世界”。在这篇文章中&#xff0c;他谈到了现代软件组织对传统企业造成的破坏。 十三年后&#xff0c;即使面对英伟达的平流层估值&#xff0…

echarts隔行背景色

看了下使用说明&#xff0c;试了半天终于搞对了 参考文档&#xff1a;Documentation - Apache ECharts option {xAxis: {type: category,data: [Mon, Tue, Wed, Thu, Fri, Sat, Sun]},yAxis: {type: value},series: [{data: [120, 200, 150, 80, 70, 110, 130],type: bar,mar…

代码随想录第30天|贪心算法

122.买卖股票的最佳时机II 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买&#xff0c;然后在 同一天 出售。 返回 你能获得…

装备制造业CRM解决方案

01、数字化转型驱动企业&#xff0c;向“以客户需求驱动创新生产”的智能制造业转变 我国装备制造业经过多年的发展&#xff0c;取得了令人瞩目的成就&#xff0c;形成了门类齐全、具有相当规模和一定水平的产业体系&#xff1b;主要包含通用设备、专用设备、电气机械、交通运…

Adobe Illustrator 矢量绘图软件下载,Ai 2024最新版获取!

Adobe Illustrator&#xff0c;无论是艺术品、图标还是海报等设计作品&#xff0c;Adobe Illustrator都能以超凡的表现力展现出设计师们的创意与才华。 近年来&#xff0c;随着人工智能技术的迅猛发展&#xff0c;各行各业都纷纷将这一技术引入自身领域&#xff0c;以提升工作效…

白驹过隙,沧海桑田

01. 机缘 今天是我加入CSDN的第2620天&#xff0c;是我成为创作者的第1024天。2021 年 08 月 25 日我在这里分享了人生中第一篇技术文章 springboot 签名验证。 现在在回看这篇文章还能感觉到当时的青涩和技术的薄弱&#xff0c;后面每一篇文章的输出可能都是在不断的学习和进…

PgSQL-添加列、字段的注释

mysql是&#xff1a; 添加列&#xff1a;--alter table 表名 add column 列名 varchar(30);ALTER TABLE p_show ADD COLUMN points VARCHAR(100) COMMENT 所需积分;---------------------------------------------------------------------------------------------添加、修改…