通过Socket通信实现局域网下Amov无人机连接与数据传输

news2024/10/25 10:22:56

1.局域网下的通信

1.1 局域网

厂家提供的方式是通过Homer图数传工具(硬件)构建的amov局域网实现通信连接.

好处是通信距离足够长,支持150m;坏处是"局部",无法访问互联网.

[IMAGE:homer连接]

根据这个原理,我尝试了通过个人局域网(即热点),建立通信连接.

[ 因为无人机本身带有机载电脑,而主机正常也就能连接热点和wifi ]

1.2个人热点[互联网下的局域网]

优点:便捷,且可访问互联网:

个人热点通常使用的确实是 WLAN(无线局域网)技术,它利用了无线技术(如Wi-Fi)来创建一个局域网络;

关键在于个人热点设备本身已经通过移动运营商的网络(如4G、5G)连接了互联网。

个人热点在此过程中扮演了中介的角色:

它将其他设备发出的请求转发给移动运营商的网络,并将响应返回给这些设备

[这意味着对于任何的报错输出你都可以去线上寻找答案(尤其是大模型AI)];

缺点是通信距离短,无人机飞远了数据传输有大延迟 ;

2.远程控制主机

2.1 GUi图形化界面--Nomachine

基于X11协议的远程桌面工具;

2.2 SSH 连接--命令行操控

连接:ssh建立连接需要账号和密码IP

[输入密码];

连接成功(如红框所示):

3.实操 --个人热点下实现ros无人机与PC传输gps经纬度

3.1实现局域网下的通信

开启手机热点,连接设备至少2个(个人PC和amov无人机机载电脑主机)

点击查看其配置(即IP):

知道ip,即可ping 查看是否能够通信;

比如我发现amov的IP地址为192.168.63.a;

1) ping尝试

ping 192.168.163.a

应有输出[代表ping通]:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128        
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

3.2连接无人机机载电脑(通过ssh)

[2.2 SSH 连接--命令行操控]

命令行下输入:

ssh amov@ 192.168.x.a 
#amov 为账户名 后面为其ip地址

输入密码;

登录成功;

3.3 启动节点[同时顺便连接qgc]

连接qgc流程:进入对应路径-更改脚本-启动脚本;

cd home/amov/p600_experiment/src/p600_experiment/launch_basic

vim p600_gps_onboard.launch

3.3.1将上图红框的ip改为要使用QGC的个人PC主机IP[如此才能实现与qgc的连接]

3.3.2随后执行该.launch脚本以启动节点:

roslaunch p600_gps_onboard.launch

脚本如下:

<!-- 本launch为使用px4_sender进行机载控制时的机载端启动脚本 -->
<launch>
	<!-- 启动MAVROS -->
	<!-- 不同机载电脑,注意修改fcu_url至正确的端口号及波特率 -->
	<node pkg="mavros" type="mavros_node" name="mavros" output="screen">
		<param name="fcu_url" value="/dev/ttyTHS0:921600" />
		<!--param name="gcs_url" value="udp://@192.168.31.46" / -->
		<param name="gcs_url" value="" />
		<param name="target_system_id" value="1" />
		<param name="target_component_id" value="1" />
		<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_pluginlists_gps.yaml" />
		<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_config_gps.yaml" />
	</node>

	<!-- 启动Prometheus代码 -->
	<!-- run the px4_pos_estimator.cpp -->
	<arg name="input_source" default="9"/>
	<arg name="rate_hz" default="30"/>
	<node pkg="prometheus_control" type="px4_pos_estimator" name="px4_pos_estimator" output="screen">
		<!-- 定位数据输入源 0 for vicon, 1 for 激光SLAM, 2 for gazebo ground truth, 3 for T265 -->
		<param name="input_source" value="$(arg input_source)" />
		<param name="rate_hz" value="$(arg rate_hz)" />
	</node>
	
	<!-- run the px4_sender.cpp -->
	<node pkg="prometheus_control" type="px4_sender" name="px4_sender" output="screen">
		<rosparam command="load" file="$(find p600_experiment)/config/prometheus_control_config/px4_sender_outdoor.yaml"/>
	</node>

	<!-- run the ground_station.cpp -->
	<node pkg="prometheus_station" type="ground_station" name="ground_station" output="screen" launch-prefix="gnome-terminal --tab --">	
	</node>

	<!-- run the ground_station_msg.cpp -->
	<node pkg="prometheus_station" type="ground_station_msg" name="ground_station_msg" output="screen" launch-prefix="gnome-terminal --tab --">	
	</node>
</launch>

3.3.3预期输出:

该cmd窗口顶端应该如下:

3.3.4 rostopic list 查看已启动节点:

白框即为涉及到gps的节点:

3.3.5 qgc成功连接:

(红框处应显示为连接成功)

3.3.6关于节点:

在ROS(Robot Operating System)中,节点(Nodes)是实现机器人功能的基本组成单元。

每个节点通常执行一个特定的任务,并且可以通过ROS的通信机制与其他节点进行数据交换。

以下是关于ROS节点的详细介绍以及一个简单的实例:

节点的基本概念:

  1. 节点定义

    • ROS节点是一个执行特定任务的进程,可以理解为ROS应用程序中的一个模块或者组件。
    • 每个节点都是一个独立的进程,可以通过ROS的通信机制与其他节点进行数据交换。
  2. 节点之间的通信

    • ROS节点通过话题(Topics)、服务(Services)、参数服务器(Parameter Server)以及动态重配置(Dynamic Reconfigure)进行通信。
    • 话题:是一种发布者-订阅者模型,节点可以发布(publish)消息到话题或者订阅(subscribe)话题接收消息。
    • 服务:允许节点请求某种特定的计算或操作,其他节点可以提供服务以响应这些请求。
    • 参数服务器:用于存储和获取ROS参数,节点可以动态地获取和修改这些参数。
    • 动态重配置:允许节点在运行时调整其参数,而不需要重启节点。
  3. 节点的编写

    • ROS节点可以使用多种编程语言编写,包括C++和Python。
    • 通常使用ROS提供的官方库(如roscpp和rospy)来编写节点,这些库提供了与ROS通信机制的高级接口。

示例:移动机器人中的ROS节点

假设有一个简单的移动机器人系统,包括以下几个ROS节点:

  1. 传感器数据获取节点

    • 功能:从机器人的传感器(例如激光雷达、相机)获取数据。
    • 通信方式:通过发布者(Publisher)发布激光数据到名为/scan的话题。
    • 实现:可以使用C++编写,订阅激光雷达数据并发布到/scan话题。
  2. 路径规划节点

    • 功能:根据机器人的当前位置和目标位置计算最优路径。
    • 通信方式:订阅机器人当前位置和目标位置的话题,并将路径信息发布到名为/path的话题。
    • 实现:可以使用Python编写,订阅/initial_pose/goal_pose话题,使用路径规划算法(如A*或Dijkstra算法)计算路径,并发布到/path话题。
  3. 运动控制节点

    • 功能:接收路径信息,并控制机器人实现运动。
    • 通信方式:订阅/path话题,控制机器人的底盘或运动执行器。
    • 实现:可以使用C++编写,订阅/path话题,调用运动控制库(如ROS MoveBase等)实现机器人的运动控制。
  4. 用户界面节点

    • 功能:提供交互界面,允许用户设定目标位置或查看机器人状态。
    • 通信方式:通过ROS服务接收用户设定的目标位置,并可以通过话题发布机器人的状态信息。
    • 实现:可以使用Python编写,提供简单的图形用户界面(GUI),通过ROS服务与其他节点进行通信。

3.3.7节点实例(p600_gps_onboard.launch):

<!-- 本launch为使用px4_sender进行机载控制时的机载端启动脚本 -->
<launch>
	<!-- 启动MAVROS -->
	<!-- 不同机载电脑,注意修改fcu_url至正确的端口号及波特率 -->
	<node pkg="mavros" type="mavros_node" name="mavros" output="screen">
		<param name="fcu_url" value="/dev/ttyTHS0:921600" />
		<!--param name="gcs_url" value="udp://@192.168.31.46" / -->
		<param name="gcs_url" value="" />
		<param name="target_system_id" value="1" />
		<param name="target_component_id" value="1" />
		<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_pluginlists_gps.yaml" />
		<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_config_gps.yaml" />
	</node>

	<!-- 启动Prometheus代码 -->
	<!-- run the px4_pos_estimator.cpp -->
	<arg name="input_source" default="9"/>
	<arg name="rate_hz" default="30"/>
	<node pkg="prometheus_control" type="px4_pos_estimator" name="px4_pos_estimator" output="screen">
		<!-- 定位数据输入源 0 for vicon, 1 for 激光SLAM, 2 for gazebo ground truth, 3 for T265 -->
		<param name="input_source" value="$(arg input_source)" />
		<param name="rate_hz" value="$(arg rate_hz)" />
	</node>
	
	<!-- run the px4_sender.cpp -->
	<node pkg="prometheus_control" type="px4_sender" name="px4_sender" output="screen">
		<rosparam command="load" file="$(find p600_experiment)/config/prometheus_control_config/px4_sender_outdoor.yaml"/>
	</node>

	<!-- run the ground_station.cpp -->
	<node pkg="prometheus_station" type="ground_station" name="ground_station" output="screen" launch-prefix="gnome-terminal --tab --">	
	</node>

	<!-- run the ground_station_msg.cpp -->
	<node pkg="prometheus_station" type="ground_station_msg" name="ground_station_msg" output="screen" launch-prefix="gnome-terminal --tab --">	
	</node>
</launch>

这是一个ROS launch文件,用于启动与机载控制相关的节点和程序。让我们逐个节点和参数来详细解释:

1. 启动 MAVROS

<node pkg="mavros" type="mavros_node" name="mavros" output="screen"> 
<param name="fcu_url" value="/dev/ttyTHS0:921600" /> 
<param name="gcs_url" value="" /> 
<param name="target_system_id" value="1" /> 
<param name="target_component_id" value="1" /> 
<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_pluginlists_gps.yaml" /> 
<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_config_gps.yaml" /> 
</node>
  • mavros_node: 这个节点来自 mavros 包,它与 PX4 Autopilot 系统通信,充当 ROS 和飞控单元之间的接口。
  • fcu_url: 指定飞控单元的串口设备及波特率,这里设置为 /dev/ttyTHS0:921600
  • gcs_url: 地面站 URL,如果有需要可以填入对应的值,但在这里是空白的。
  • target_system_id 和 target_component_id: 分别指定飞控单元的系统 ID 和组件 ID。
  • px4_pluginlists_gps.yaml 和 px4_config_gps.yaml: 加载了用于 MAVROS 的配置文件,配置 PX4 插件和参数。

2. 启动 Promethues 代码

<node pkg="prometheus_control" type="px4_pos_estimator" name="px4_pos_estimator" output="screen"> 
<param name="input_source" value="9" /> 
<param name="rate_hz" value="30" /> 
</node>
  • px4_pos_estimator: 这个节点估计无人机的位置,根据参数设置从不同的数据源获取位置数据,这里使用参数 input_source 来指定输入源为 9,可能代表特定的传感器或系统。
  • rate_hz: 设置节点运行的频率为 30Hz。
<node pkg="prometheus_control" type="px4_sender" name="px4_sender" output="screen"> 
<rosparam command="load" file="$(find p600_experiment)/config/prometheus_control_config/px4_sender_outdoor.yaml"/> 
</node>
  • px4_sender: 这个节点负责向 PX4 发送控制命令或数据。通过加载 px4_sender_outdoor.yaml 文件来配置节点所需的参数。

3. 启动地面站相关节点

<node pkg="prometheus_station" type="ground_station" name="ground_station" output="screen" launch-prefix="gnome-terminal --tab --"> 
</node> <node pkg="prometheus_station" type="ground_station_msg" name="ground_station_msg" output="screen" launch-prefix="gnome-terminal --tab --"> 
</node>
  • ground_station: 这个节点可能是一个地面站程序的一部分,用于与无人机或系统进行通信和控制。launch-prefix 设置了在新标签页中启动该节点。
  • ground_station_msg: 这个节点可能是用来处理地面站的消息传递和交互的程序。

3.2 订阅话题

GimbalBasic::GimbalBasic(ros::NodeHandle &nh)
{
    nh.param<std::string>("multicast_udp_ip", multicast_udp_ip, "224.0.0.88");
    this->communication_ = new Communication(nh);
    //【订阅】吊舱状态数据
    this->gimbal_state_sub_ = nh.subscribe("/gimbal/state", 10, &GimbalBasic::stateCb, this);
    //【订阅】跟踪误差
    this->vision_diff_sub_ = nh.subscribe("/gimbal/track", 10, &GimbalBasic::trackCb, this);
    //【发布】框选 点击 目标
    this->window_position_pub_ = nh.advertise<ground_station_bridge::WindowPosition>("/detection/bbox_draw", 1000);
    //【发布】吊舱控制
    this->gimbal_control_pub_ = nh.advertise<ground_station_bridge::GimbalControl>("/gimbal/control", 1000);
}

3.2.1 订阅(sub)话题实例 :

this->gimbal_state_sub_ = nh.subscribe("/gimbal/state", 10, &GimbalBasic::stateCb, this); 
this->vision_diff_sub_ = nh.subscribe("/gimbal/track", 10, &GimbalBasic::trackCb, this);
  • 这两行代码分别用来订阅两个不同的ROS话题。
  • gimbal_state_sub_ 订阅 /gimbal/state 话题,每次缓存10个消息,当有新消息时调用 GimbalBasic::stateCb 成员函数处理。
  • vision_diff_sub_ 订阅 /gimbal/track 话题,同样每次缓存10个消息,当有新消息时调用 GimbalBasic::trackCb 成员函数处理。
  • &GimbalBasic::stateCb 和 &GimbalBasic::trackCb 是成员函数指针,指向处理收到消息的回调函数。

3.2.2 查看所有话题:

rostopic list 是一个命令行工具命令,用于列出当前ROS系统中所有可用的话题(topics);

3.2.3 命令行终端获得gps话题的输出:

e.g.

rostopic echo /mavros/gpsstatus/gps1/raw

预期输出:

关于话题:

话题(topics)是一种基础的通信机制,用于在ROS节点之间传递消息。话题是一种发布者-订阅者(publisher-subscriber)模型的实现,允许节点(ROS程序)以异步的方式进行通信。以下是关于ROS话题的一些重要信息和特性:

1. 定义和命名

  • 话题名称: 每个话题都有一个唯一的名称,用于在整个ROS系统中标识该话题。话题名称以斜杠 / 开头,例如 /odom/scan 等。
  • 消息类型: 每个话题传递的消息具有特定的数据类型,如传感器数据、控制命令等。消息类型由 ROS 消息定义文件(.msg 文件)定义,并且在编译时生成。

2. 通信模式

  • 发布者(Publishers): 发布者节点向话题发布消息。多个节点可以同时发布到同一个话题。
  • 订阅者(Subscribers): 订阅者节点从话题订阅消息。多个节点可以同时订阅同一个话题。

3. 异步通信

  • ROS话题的通信是异步的,即发布者和订阅者之间不需要直接建立连接。发布者发布消息后,所有订阅该话题的节点都能接收到这些消息,而不需要发布者和订阅者同时在线。

3.3 通过socket传回[+内容筛选]

socket代码如下:

server:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import socket

# 设置服务器的 IP 地址和端口号
SERVER_IP ='192.168.79.60' #'10.128.72.152'#'192.168.1.134'#'192.168.231.77'
SERVER_PORT = 8082

# 创建一个 TCP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

# 连接服务器
client_socket.connect((SERVER_IP, SERVER_PORT))

# 设置超时时间为 5 秒
client_socket.settimeout(10)

while True:
    # # 发送 "rostopic echo" 命令给服务器
    # message = "rostopic echo"
    # client_socket.sendall(message.encode())
    # 手动输入消息
    message = input("请输入要发送的消息 ('q' to quit): ")
    if message == 'q':
        break
    # 发送消息给服务器
    client_socket.sendall(message.encode())
    # 接收服务器的响应
    try:
        response = client_socket.recv(4096)  # 增加缓冲区大小以确保完整接收响应
        if response:
            response_str = response.decode('gbk')
            print("从服务器收到的响应:", response_str)

            # 截取以“lat:”开头的行
            lat_lines = [line for line in response_str.split('\n') if line.startswith('lat:')]
            print("截取的 lat 行:")
            if lat_lines:
                for line in lat_lines:
                    print(line)
            else:
                print("没有找到以 'lat:' 开头的行")

            # 截取以“lon:”开头的行
            lon_lines = [line for line in response_str.split('\n') if line.startswith('lon:')]
            print("截取的 lon 行:")
            if lon_lines:
                for line in lon_lines:
                    print(line)
            else:
                print("没有找到以 'lon:' 开头的行")
        else:
            print("服务器没有响应")
    except socket.timeout:
        print("操作超时,请重试")



# 关闭连接
client_socket.close()
client[实现基本的实时输入通信]:
import socket

# 设置服务器的 IP 地址和端口号
SERVER_IP ='10.128.74.238'    #'192.168.1.123'
SERVER_PORT = 8080  # 端口号与服务器端口号一致

# 创建一个 UDP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:
    # 输入要发送的数据
    message = input("请输入要发送到服务器的消息(输入 'exit' 退出): \n GPS:")
    if message == 'exit':
        break

    # 发送数据
    client_socket.sendto(message.encode(), (SERVER_IP, SERVER_PORT))

    # 接收服务器的响应
    data, server_address = client_socket.recvfrom(1024)
    print(f"收到来自服务器 {server_address} 的响应:", data.decode())

# 关闭连接
client_socket.close()

3.4 传给本地数据库

[待补充]..

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1842525.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Python进行音频处理和机器学习

使用Python进行音频处理和机器学习的简介 从高层次上讲&#xff0c;任何机器学习问题都可以分为三种任务&#xff1a;数据任务&#xff08;数据收集&#xff0c;数据清理和特征形成&#xff09;&#xff0c;培训&#xff08;使用数据特征构建机器学习模型&#xff09;和评估&am…

学习新语言方法总结(一)

随着工作时间越长&#xff0c;单一语言越来越难找工作了&#xff0c;需要不停地学习新语言来适应&#xff0c;总结一下自己学习新语言的方法&#xff0c;这次以GO为例&#xff0c;原来主语言是PHP &#xff0c;自学GO 了解语言特性&#xff0c;知道他是干嘛的 go语言&#xff0…

Pikachu靶场--XSS

参考借鉴 Pikachu靶场之XSS漏洞详解_pikachu xss-CSDN博客 一个视频讲清楚XSS跨站脚本&#xff08;CTF教程&#xff0c;Web安全渗透测试入门&#xff09;_bilibili 反射型xss(get) 输入payload&#xff1a;<script>alert(123)</script> 解决一&#xff1a;在URL框内…

安装MySQL5.7版本步骤遇到问题

方法一&#xff1a;下载zip版本&#xff08;我用的这个&#xff09; 参考视频&#xff08;已收藏&#xff09;&#xff1a;windows安装MySQL5.7_哔哩哔哩_bilibili 下载zip压缩包的MySQL的网址&#xff1a;上面这个视频中有哦。 my.ini文件内容如下&#xff1a; [client] p…

动手学自然语言处理:解读大模型背后的核心技术

自从 ChatGPT 横空出世以来&#xff0c;自然语言处理&#xff08;Natural Language Processing&#xff0c;NLP&#xff09; 研究领域就出现了一种消极的声音&#xff0c;认为大模型技术导致 NLP “死了”。在某乎上就有一条热门问答&#xff0c;大家热烈地讨论了这个问题。 有…

部署RAC到单实例ADG(11G)

服务器信息 主库RAC环境信息 主库RAC基本环境 节点1 节点2 OS centos 7.9 centos 7.9 数据库版本 11.2.0.4 11.2.0.4 规格 1C4G 1C4G 主机名 racdb01 racdb02 public ip 192.168.40.135 192.168.40.145 vip 192.168.40.13 192.168.40.14 private ip 192…

Pikachu靶场--文件上传

参考借鉴 Pikachu靶场之文件上传漏洞详解_皮卡丘文件上传漏洞-CSDN博客 文件上传漏洞&#xff1a;pikachu靶场中的文件上传漏洞通关_pikachu文件上传通关-CSDN博客 client check 在桌面新建一个文件夹&#xff0c;准备一个hello.php文件&#xff0c;文件写入如下代码 <?p…

【C++】类和对象(三)构造与析构

文章目录 一、类的6个默认成员函数二、 构造函数干嘛的&#xff1f;语法定义特性综上总结什么是默认构造函数&#xff1f; 三、析构函数干嘛的 &#xff1f;语法定义析构顺序 一、类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。空类中并不是真的什么…

还在为Android开发找不到图片测试资源发愁吗? DummyImage来助你加速开发

使用 DummyImage 模拟电影应用数据 在开发和测试过程中&#xff0c;模拟数据是不可或缺的工具。它可以帮助我们在没有真实数据的情况下测试应用程序的功能和性能。本文将介绍如何使用 [DummyImage]https://dummyimage.com生成占位符图像来模拟电影应用的数据&#xff0c;并深入…

零拷贝之MMAP:内存映射

零拷贝之MMAP:内存映射 减少cpu拷贝次数 减少时间约为1倍 import java.io.File; import java.io.RandomAccessFile; import java.nio.MappedByteBuffer; import java.nio.channels.FileChannel;//零拷贝之MMAP:内存映射 减少cpu拷贝次数 减少时间约为1倍public static void mai…

人工智能的头号威胁:投毒攻击

随着掌管数字生活入口的万亿美元俱乐部企业——苹果公司跳入人工智能&#xff08;AI&#xff09;赛道&#xff0c;AI技术民主化的大幕正式拉开&#xff0c;同时也将AI安全问题推向舆论的风口浪尖。 根据瑞银本周一的智能手机调查报告&#xff0c;在中国以外的智能手机用户中&am…

搭建取图系统app源码开发,满足广泛应用需求

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 前言 图片已成为信息传递的重要媒介&#xff0c;广泛应用于各个领域。为满足日益增长的图片需求&#xff0c;搭建一款高效的取图系统&#xff0c;可以为用户提供便捷、全面的…

真内控国产化开发平台 preview 任意文件读取漏洞复现

0x01 产品简介 真内控国产化平台是基于国产可控技术开发的内部控制管理咨询及信息化服务平台。该平台涵盖了预算绩效、支出管理、采购管理、合同管理、资产管理、基建项目管理等多个模块&#xff0c;为公共部门&#xff08;包括政府部门、科研机构、学校、医院等&#xff09;提…

存u盘里的视频没删除找不到了怎么办?别急,这几招来帮您

在数字化时代&#xff0c;U盘已成为我们随身携带、存储和传输文件的重要设备。然而&#xff0c;有时我们会突然发现存放在U盘中的视频文件不翼而飞&#xff0c;这常常让我们感到困扰和焦虑。视频文件可能包含了重要的工作资料、珍贵的家庭记忆或是无法再找回的独特素材。面对这…

国际数字影像产业园:致力于园区数字化和智能化的发展

数字化和智能化发展策略 数字化基础设施建设&#xff1a;园区提供高标准的基础设施建设&#xff0c;包括高速网络、数据中心等&#xff0c;为入园企业提供稳定、高效的网络和数据服务。通过数字化技术的应用&#xff0c;实现园区内信息的快速传递和资源的优化配置&#xff0c;…

NebulaGraph 知识图谱数据库使用:nebula数据库连接使用

参考:https://github.com/vesoft-inc/nebula-python/blob/master/example/GraphClientSimpleExample.py 文档&#xff1a;https://docs.nebula-graph.com.cn/3.4.1/3.ngql-guide/7.general-query-statements/2.match/#_4 pip install nebula3-python1&#xff09;查询的节点&…

【Pandas驯化-10】一文搞懂Pandas中一列混合多种数据类型to_numeric、select_dtypes处理

【Pandas驯化-10】一文搞懂Pandas中一列混合多种数据类型to_numeric、select_dtypes处理 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; …

Exposure X7软件安装包下载 丨不限速下载丨亲测好用

根据使用者情况表明Exposure的设计鼓励您进行创造性的工作&#xff0c;使用涂刷和遮罩工具将效果有选择地应用于图片的特定区域&#xff0c;非破坏性图层使您能够混合预设和调整&#xff0c;以获得无尽的外观。我们都知道Exposure是用于创意照片编辑的最佳图片编辑器&#xff0…

【漏洞复现】红帆iOffice.net wssRtSyn接口处存在SQL注入

【产品&&漏洞简述】 红帆iOffice.net从最早满足医院行政办公需求&#xff08;传统OA&#xff09;&#xff0c;到目前融合了卫生主管部门的管理规范和众多行业特色应用&#xff0c;是目前唯一定位于解决医院综合业务管理的软件&#xff0c;是最符合医院行业特点的医院综…