深度学习在岩土工程应用及PFC离散元数值模拟应用

news2024/11/20 7:17:44

在深度学习与岩土工程融合的背景下,科研的边界持续扩展,创新成果不断涌现。从基本物理模型的构建到岩土工程问题的复杂模拟,从数据驱动的分析到工程问题的智能解决,深度学习正以前所未有的动力推动岩土工程领域的革新。据调查,目前在岩土工程领域内,深度学习的应用主要集中在以下几个方面:

1、预测模型开发:使用深度学习来预测土壤和岩石的力学行为,例如土压力、剪切强度等。

2、数据驱动特性分析:通过机器学习算法分析大量实验数据,以识别土壤和岩石的非线性特性。

3、地质结构识别:应用深度学习技术如卷积神经网络(CNN),识别和分类地质结构和岩石类型。

4、地下设施稳定性分析:利用深度学习模型评估地下设施(隧道、矿井)的稳定性和潜在风险。

5、环境影响评估:使用深度学习模拟和预测岩土工程活动对环境(地下水流、土壤污染)影响。

6、灾害风险评估:应用深度学习模型来评估地震、滑坡等自然灾害对岩土工程结构的潜在风险

7、智能监测和诊断:利用深度学习进行岩土工程结构的实时监测,及时发现问题并进行诊断

8、自动化设计和优化:使用深度学习算法自动设计岩土工程解决方案,优化工程设计参数。
在这里插入图片描述
深度学习与岩土工程讲师

双一流及985工程建设高校副教授、硕导。主持和参与国家及省自然科学基金多项,发表 SCI 检索论文30余篇,论文总共他引900余次。主要从事岩土工程数值模拟方法研究。在土体基本理论与本构关系、人工智能机器学习在岩土工程中的应用等方面积累了丰富的经验。

PFC讲师

江苏省高水平建设重点高校副教授、硕导。参与国家及省自然科学基金数项,发表 SCI 检索论文二十余篇,国际、国内会议论文二十余篇,其中专利两项,软著五项。主要从事岩土工程数值模拟方法。在土体宏微观力学特性与本构关系、城市地下空间工程、人工智能机器学习在岩土工程中的应用等方面积累了丰富的经验。
深度学习在岩土工程中的应用与实践

课 程

内容

岩土工程

物理模型基础

  1. 岩土工程中的基本物理模型及工程问题

1.1.饱和土的一维渗流固结模型(扩散方程)及实际工程应用

1.2.达西定律与饱和土渗流方程(Laplace equation)及适用性

1.3.非饱和土渗流数学模型(Richards方程)及实际工程应用

1.4.工程应用中的正问题与反问题,通过具体案例区分

  1. 基本物理模型的求解方法

2.1.边界条件:通过图解和实际工程案例,讲解边界条件在物理模型中的作用,如无流边界、狄利克雷边界等

2.2.线性方程的解析解法

2.2.1. 直接解法:分离变量法及行波变换法

2.2.2. 间接解法:积分变换法

实战演练:分离变量法求固结方程的解析解

2.3.非线性方程的解析解法

2.3.1. 直接解法:双线性方法

2.3.2. 间接解法:反散射变换

实战演练:双线性方法求KdV方程的解析解

2.4.线性与非线性方程的数值解法

2.4.1. 有限差分法

2.4.2. 有限单元法

2.4.3. 谱方法

实战演练:时间分布Fourier方法求Boussinesq方程的数值解

Python及神经网络构建基础

  1. Python基本指令及库

3.1.Python基础:通过交互式编程环境,教授Python基础,包括数据类型和逻辑运算等

3.2.科学计算库:介绍Numpy和Matplotlib,并讲授如何使用它们进行科学计算和数据可视化

实战演练:基于简单Numpy指令解决岩石图像分类问题

3.3.神经网络构建:通过简单的实例,如使用Numpy构建感知机,教授神经网络的基本概念

3.4.深度学习框架:通过Tensorflow和Pytorch的实例,教授如何构建和训练用于岩土工程问题的深度学习模型

实战演练:基于Pytorch模块求解渗透系数及其影响因素间关系的量化模型

数据—物理

双驱动神经网络

  1. 深度学习基本原理与数据—物理双驱动神经网络

4.1.深度学习基础

4.1.1. 神经元及激活函数

4.1.2. 前馈神经网络与万能逼近定律

4.1.3. 多种深度神经网络

4.1.4. 自动微分方法

4.1.5. 深度神经网络的损失函数

4.1.6. 最优化方法

4.2.数据—物理双驱动神经网络方法

4.2.1. 物理信息神经网络(PINN)的工作原理及应用介绍

4.2.2. 深度算子网络(DeepONet)的工作原理及应用介绍

4.2.3. 物理深度算子网络(PI-DeepONet)的工作原理及应用介绍

实战演练:利用DeepXDE框架解决饱和土体的固结问题

案例实践

论文复现

  1. 动手实践:论文复现

论文实例解读与实战(一):PINN模型在固结问题中的应用

参考文献:Application of improved physics-informed neu-ral networks for nonlinear consolidation problems with continuous drainage boundary conditions

Ø 神经网络架构的选择与设计

Ø 固结方程作为约束的损失函数设计

Ø 训练及预测

Ø 构建并训练一个固结问题的PINN模型

Ø 硬约束边界条件

论文实例解读与实战(二):PINN模型在非饱和渗透模拟中的应用

参考文献:Surrogate modeling for unsaturated infiltration via the physics and equality-constrained artificial neural network

Ø PINN的改进—PECANN模型

Ø 损失函数的设计:数据拟合项与物理定律项的平衡

Ø 训练数据的生成:合成数据与实验数据(多保真PINN模型)

Ø PINN用于非饱和渗透模拟的优势(不确定性问题)

论文实例解读与实战(三):PINN模型在非线性波动方程中的应用

参考文献:Explorations of certain nonlinear waves of the Boussinesq and Camassa–Holm equations using physics-informed neural networks

Ø Boussinesq方程与Camassa-Holm方程的数值求解难点

Ø PINN的改进—MPINN模型

Ø PINN的优势、劣势及未来发展方向

PFC离散元数值模拟仿真技术与应用

课 程

内容

理论基础及PFC入门

1 岩土工程数值模拟方法概述

1.1基于网格的模拟方法:

有限元、有限差分、大变形处理CEL、ALE、XFEM

1.2基于点的模拟方法:

离散单元法DEM、光滑粒子流方法SPH、物质点法MPM

1.3基于块体的模拟方法

2 离散元与PFC软件操作

2.1 离散元的基本原理(计算原理、宏观参量与微观参量的关系)

2.2 PFC软件界面操作

2.3文件系统

2.4显示控制

2.5帮助文档的使用

FISH、PYTHON语言及COMMAND命令

3 PFC软件的计算控制方法

3.1 PFC计算控制的语言逻辑

3.2 FISH语言(基本语法、函数定义与调用、创建模型、控制模拟过程、处理模拟结果、FISH Callback操作等)

3.3 COMMAND命令(命令结构、创建模型、状态监测与绘图、控制模拟过程、求解控制、状态查询、与FISH语言的混合使用等)

3.4 PYTHON语言(基本语法、Numpy库的使用、接口的使用等)

离散元模拟方法

4 离散元模拟方法

4.1离散元数值试样的生成方法

4.1.1单元试样模型生成方法

4.1.2边值问题(场地)模型生成方法

4.1.3连续—非连续耦合模型生成方法

4.1.4复杂颗粒形状的模拟方法(Rblock方法、Clump方法)

4.2接触模型选择与参数标定

4.2.1离散元接触模型的选择原则—12个内置模型

4.2.2接触模型参数的标定方法与参数意义—以胶结颗粒材料(岩石、胶结砂土等)为例,讲授参数标定步骤

4.3其他问题

4.3.1模型边界条件施加方法(达到初始平衡状态、开挖类模拟、填筑类模拟、加载类模拟、周期性边界、应力伺服)

4.3.2各种阻尼的选择(粘滞阻尼、局部阻尼、滞回接触模型)

4.3.3时步与时步缩放(静力、动力问题时步及相关命令)

4.3.4试样尺寸、颗粒数量、级配选择

4.3.5 并行计算

土体单元试验模拟

5 土体单元试验模拟方法

5.1常规三轴剪切试验模拟(命令流+FISH)

5.1.1建模方法与注意事项

5.1.2模拟结果分析

5.1.3模拟结果可视化

5.2真三轴剪切模拟(命令流+FISH)

5.2.1真三轴加载路径的模拟

5.2.2真三轴强度准则

5.2.3微观结构演变过程

5.3不排水三轴剪切模拟(命令流+FISH)

5.4循环三轴剪切的模拟(命令流+FISH)

5.5颗粒破碎过程模拟(命令流+FISH)

5.6岩石(胶结颗粒)材料的剪切过程模拟

5.7离散元模拟与弹塑性本构模型

工程实例分析

6 工程实例分析

6.1活动门试验模拟(命令流+FISH)

6.1.1试样级配控制

6.1.2应力状态控制

6.1.3孔隙比的控制

6.1.4 活动门加载的实现

6.2盾构隧道掌子面稳定性(命令流+FISH)

6.2.1主动失稳模式

6.2.2被动失稳模式

6.3节理岩体中的硐室开挖稳定性(命令流+FISH)

6.3.1节理裂隙岩体的生成

6.3.2初始应力状态控制

6.3.3 开挖模拟

PFC3D与FLAC3D耦合模拟与分析

7 离散—连续域耦合模拟

7.1离散—连续耦合模拟方法

Ø 与FLAC3D中一维结构单元耦合

Ø 与FLAC3D中二维壳结构单元或三维实体单元的面的耦合

Ø 与FLAC3D中三维实体单元的耦合(实例)

7.2离散—连续域参数匹配

7.3基于离散—连续域耦合的三轴剪切试验模拟(命令流+FISH)

实例操作:二维壳结构单元耦合(壳单元模拟橡胶膜-创建耦合墙-施加应力边界等向压缩-剪切模拟)

7.4基于离散—连续域耦合的地基承载力分析(命令流+FISH)

实例操作:基于Punch indentation案例的修改与实现

PFC-CFD耦合模拟与分析

8 流固耦合分析

8.1颗粒与流体相互作用理论(CFD模块概况、体积平均粗网格法、颗粒与流体相互作用计算)

8.2流固耦合框架

Ø CFD网格、流体域边界设置、网格导入、网格流体参数设置

Ø 孔隙率计算

Ø 耦合时间间隔、耦合时步、网格与颗粒尺寸

Ø 耦合步骤

8.3实例操作分析(命令流+FISH)

8.3.1单向耦合

8.3.2孔隙介质中Darcy流模拟(Fipy应用)

8.3.3 与FLAC3D的渗流耦合模拟
在这里插入图片描述
v1047608967
深度学习在岩土工程应用及PFC离散元数值模拟应用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1838168.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

EE trade:现货黄金的计量单位及转换

在现货黄金市场中,计量单位的不同会影响投资者对价格的理解和对交易的操作。因此,了解现货黄金的计量单位是每一位投资者的必修课。对于那些刚刚踏入黄金投资的新手们来说,掌握这些知识尤为重要。本文将为您详细介绍现货黄金的主要计量单位及…

Nginx Rewrite技术

一:理解地址重写 与 地址转发的含义。二:理解 Rewrite指令 使用三:理解if指令四:理解防盗链及nginx配置 简介:Rewrite是Nginx服务器提供的一个重要的功能,它可以实现URL重定向功能。 一:理解地…

抖音短剧看剧系统是怎么做的?怎么样搭建上线运营?

前言: 当前热门短剧已深入大家的日常,针对一些好的短剧更是吸金无数。今天给大家介绍一下短剧这个项目整个运作模式。 一、一部短剧是怎么样呈现到观众眼前的? 首先影视作品公司拍摄剪辑好短剧 ,弄好一切审核后,放到…

【Python】类和对象的深入解析

目录 前言 什么是类? 定义一个类 创建对象 访问和修改属性 方法 类的继承 多态 封装 特殊方法 属性装饰器 总结 前言 Python 是一种面向对象的编程语言,它允许程序员通过类和对象来组织和管理代码。面向对象编程(OOP&#xff09…

【数据结构与算法】最小生成树

文章目录 最小生成树(MST)定义 构造最小生成树Prim算法Kruskal算法 最小生成树(MST) 连通图的生成树包含图的所有顶点,并且只含有尽可能少的边。对于生成树来说,若砍去它的一条边,则会使生成树…

Linux中的文本编辑器vi与vim

摘要: 本文将深入探讨VI和VIM编辑器的基本概念、特点、使用方法以及它们在Linux环境中的重要性。通过对这两款强大的文本编辑器的详细分析,读者将能够更全面地理解它们的功能,并掌握如何有效地使用它们进行日常的文本编辑和处理任务。 引言&…

智慧之选:Vatee万腾平台,引领未来的创新引擎

在数字化浪潮席卷全球的今天,我们身处一个信息爆炸、技术革新的时代。在这样的大背景下,选择一个能够引领我们走向未来的平台显得尤为重要。而Vatee万腾平台,正是这样一个不容错过的智慧之选。 Vatee万腾平台,作为一个集创新、科技…

yolov8图像分割训练

1.背景 最近在做一个AI项目,需要用到yolov8的实例分割功能来确定一个不规则区域,从而找出不规则区域的坐标完成大致定位,以前有用过yolov8的目标检测功能,实际上yolov8的分割功能和检测功能大同小异。本博客将仔细分享使用yolov8图…

【C++提高编程-10】----C++ STL常用拷贝和替换算法

🎩 欢迎来到技术探索的奇幻世界👨‍💻 📜 个人主页:一伦明悦-CSDN博客 ✍🏻 作者简介: C软件开发、Python机器学习爱好者 🗣️ 互动与支持:💬评论 &…

Intelij IDEA中Mapper.xml无法构建到资源目录的问题

问题场景: 在尝试把原本在eclipse上的Java Web项目转移至Intelij idea上时,在配置文件均与eclipse一致的情况下出现了如下报错: org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): cn.umbrella.crm_core.…

Ubuntu网络管理命令:route

安装Ubuntu桌面系统(虚拟机)_虚拟机安装ubuntu桌面版-CSDN博客 route命令与ifconfig命令都在net-tools软件包中,是一个传统的Linux路由管理命令。通过route命令可以显示和管理路由表。route命令的基本语法如下: route [options]…

尚硅谷爬虫学习第一天(3) 请求对象定制

#url的组成 #协议 http,https,一个安全,一个不安全。 #主机, 端口号 学过java 的肯定知道 沃日,以前面试运维的时候,问到主机地址,我懵逼了下,回了个8080 # 主机地址 80 # …

[Redis]持久化机制

众所周知,Redis是内存数据库,也就是把数据存在内存上,读写速度很快,但是,内存的数据容易丢失,为了数据的持久性,还得把数据存储到硬盘上 也就是说,内存有一份数据,硬盘也…

python是TIOBE编程语言排名第一的编程语言,它有什么优点?它的使用场景有哪些?用python打印数字1--100,用python打印九九乘法表怎么写?

Python是TIOBE编程语言排行榜排名第一的编程语言 。 python是一种解释性、交互式、面向对象的跨平台的语言。 python设计者及名称由来 Guido van Rossum 荷兰人---吉多范罗苏姆,是 Python 编程语言的最初设计者,在 Python 社区一直担当终身仁慈独裁者&…

【权威出版/投稿优惠】2024年水利水电与能源环境科学国际会议(WRHEES 2024)

2024 International Conference on Water Resources, Hydropower, Energy and Environmental Science 2024年水利水电与能源环境科学国际会议 【会议信息】 会议简称:WRHEES 2024 大会时间:点击查看 截稿时间:点击查看 大会地点:…

聊一聊大模型应用落地那些事

大模型并不神奇 很多人听到"大模型"这个词可能会觉得很神秘,其实,LLM 就是神经网络,只是很大的神经网络,相对传统神经网络,大就是它的特点。我们用一个压缩算法的简单例子来帮助理解这个巨大的神经网络。 …

.[nicetomeetyou@onionmail.org].faust深入剖析勒索病毒及防范策略

引言: 在数字化时代,网络安全问题日益凸显,其中勒索病毒无疑是近年来网络安全的重大威胁之一。勒索病毒以其独特的加密机制和恶意勒索行为,给个人和企业带来了巨大的经济损失和数据安全风险。本文将从勒索病毒的传播方式、攻击链、…

.net 6 api 修改URL为小写

我们创建的api项目,url是[Route(“[controller]”)],类似这样子定义的。我们的controller命名是大写字母开头的,显示在url很明显不是很好看(url不区分大小写)。转换方式: var builder WebApplication.Crea…

SpringBoot整合阿里云短信服务

文章目录 1. 准备工作2. 添加依赖3. 配置阿里云短信服务4. 创建配置类5. 创建服务类6.自定义异常7.使用服务类发送短信8.测试短信 1. 准备工作 注册阿里云账号:首先确保你有一个阿里云账号,并且已经开通了短信服务。获取AccessKey ID和AccessKey Secret…

奇怪的缓存一致性问题

天猫国际用户Push中心承接了国际用户触达相关的需求,比如短信、端内消息投放等等,并存在较高的并发场景。 该系统此前发现了一个查询投放计划plan为null的异常情况,在初期排查时有些丈二和尚摸不着头脑,后面突然灵光乍现——原来是…