【自动驾驶技术】自动驾驶汽车AI芯片汇总——TESLA篇(FSD介绍)

news2025/1/20 15:49:13

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本篇文章是这个自动驾驶汽车AI芯片系列的第三篇,也算终于轮到特斯拉出场了!(Respect)

自动驾驶汽车AI芯片系列目录:

1. NVIDIA篇

2. 地平线篇

提到特斯拉,大家估计第一反应会想到“FSD”,没错!本文的主角就是“FSD”,或者更准确来说应该是“FSD芯片”。

FSD全称是Full Self-Driving(多么直奔主题),但在开始介绍FSD之前,我想先聊聊特斯拉的自动驾驶平台——HW。

这里的HW就纯是HardWare的意思,与某为毫不相干。

1. TESLA 自动驾驶平台

特斯拉的硬件平台(Hardware Platform,简称HW)是指在其电动汽车中用于自动驾驶功能的计算和传感系统。特斯拉的硬件平台经历了几代的演变,每一版都代表着技术上的进步和对自动驾驶能力的提升:

第一代:HW 1.0

  • 发布时间:2014年
  • 方案特点:初期版本,包含了摄像头、超声波传感器和雷达。
  • SoC芯片:使用的是Mobileye的EyeQ3芯片,主要负责视觉处理,但后来特斯拉和Mobileye因理念不合而分道扬镳。

当时Mobileye客户非常多,估计也没太把特斯拉放在心上。现在的Mobileye……呵呵。

第二代:HW 2.0 / HW 2.5

  • 发布时间:2016年
  • 方案特点:引入了更多的传感器,包括前置三目摄像头、前后雷达、以及环绕车身的超声波传感器,增强了整体感知能力。
  • SoC芯片:
    • HW2.0:采用了NVIDIA 的Drive PX2平台。
    • HW2.5:在HW2.0的基础上增加了额外的NVIDIA Tegra Parker芯片于增强计算能力。

第三代:HW 3.0 (转折点,FSD引入)

  • 发布时间:2019年
  • 方案特点:特斯拉自研的FSD芯片首次亮相,标志着特斯拉开始全面掌握从芯片设计到软件开发的全栈技术。
  • SoC芯片:特斯拉定制的FSD芯片,采用了双核设计,每个核心都有独立的CPU、GPU和神经网络加速器,基于14纳米工艺制造,大幅提升了计算能力和能效比。

第四代:HW 4.0

  • 发布时间:2023年
  • 方案特点:NNA的数量从2个增加到3个,工作频率也从2.0GHz提升至2.2GHz,这有助于更高效地处理深度学习任务,尤其是针对视觉数据的分析。摄像头的数量和质量均有所提升,从8颗120万像素摄像头升级至7颗500万像素摄像头,这不仅提高了图像清晰度,还增加了探测距离,从200多米提升至424米。
  • SoC芯片:特斯拉的下一代FSD芯片,预计采用更先进的制程技术(如7纳米或更小),算力大幅提升5倍,可能达到700多TOPS。有报道指出,HW4.0的FSD芯片可能由台积电采用4纳米或5纳米工艺生产。

从上面HW的发展过程我们可以看出:从HW 3.0开始,特斯拉正式搭载自研的FSD芯片,这家汽车制造公司也掌握了芯片及软件的设计能力。当然,这非常符合马斯克的作风。

由于HW 4.0的公开资料还比较少,本文将基于HW 3.0来说明,也就是大约在特斯拉2019年的技术水平。如果后面有更多的HW 4.0的技术细节,我会再补充本文的内容!

2. HW 3.0架构

特斯拉的Hardware 3.0(简称HW 3.0)是特斯拉自动驾驶计算机的一个重大迭代,它在2019年开始装备于特斯拉的新生产车辆中,用以取代之前的Hardware 2.5。它是专门为特斯拉的Autopilot和未来的完全自动驾驶(Full Self-Driving,FSD)功能设计的。

2.1 架构与设计

HW 3.0包括两套完全独立的系统,每套系统都配备了独立的CPU、GPU、NNA(神经网络加速器)以及内存,两套系统中的一个作为主系统运行,另一个作为热备份,在主系统出现故障时立即接管,这样可以实现冗余,增加安全性。

双系统设计的另一个好处就是互相校验,对于同一个驾驶场景,两套系统经过一系列的感知、规划算法(或者一整个端到端算法),所得到的驾驶决策应该是一致的,这也进一步提升了自动驾驶的功能安全冗余。

2.2 性能
  • 算力:HW 3.0的算力达到了每秒144万亿次运算(144 TOPS),相比之下,Hardware 2.5的算力约为每秒11 TOPS,性能提升了大约13倍。
  • 功耗:尽管性能大幅提高,但HW 3.0的功耗仅从Hardware 2.5的60W增加到72W。
  • 视频处理能力:HW 3.0能够处理每秒高达2,300帧的图像数据,比Hardware 2.5的每秒200帧有了显著提升。
2.3 兼容性与升级
  • 兼容性:特斯拉设计了HW 3.0,使其可以无缝替换Hardware 2.5,这意味着特斯拉可以通过软件更新解锁更多功能,而无需更换整个硬件系统。
  • 升级路径:特斯拉车主可以通过付费服务将旧的Hardware 2.5升级至HW 3.0,从而获得更强大的计算能力和未来的FSD功能。

3. FSD芯片

特斯拉的全自动驾驶FSD芯片是该公司为了实现自动驾驶技术而自行设计的专用集成电路(ASIC)。

这款芯片最初在2019年推出,用于取代之前使用的英伟达GPU,旨在提高计算性能和效率,以支持特斯拉车辆中的Autopilot和FSD功能。以下是关于特斯拉FSD芯片的一些关键细节:

3.1 架构和组件

FSD芯片包含多个处理单元,包括以下:

  • 3个四核Cortex-A72集群,共计12个CPU核心,运行频率为2.2GHz。
  • 1个Mali G71 MP12 GPU,工作频率为1GHz,支持FP16和FP32浮点运算。
  • 2个神经网络加速器(NNA),用于深度学习推理,这是FSD芯片的核心部分,用于处理自动驾驶所需的大量视觉和传感器数据,运行频率为2GHz。

  • 32MB的SRAM缓存,用于存储模型权重和加速数据访问。
  • ISP和PHY各种通讯接口。

3.2 制造和工艺

HW 3.0的FSD芯片采用三星的14纳米FinFET工艺制造。

3.3 第二代FSD芯片(FSD 2.0 / HW4.0)
  • 制造工艺:使用了更先进的7纳米制程技术,有报道甚至提及了4纳米或更先进的3纳米工艺。
  • 性能提升:相对于初代FSD芯片,第二代芯片的性能预计提升了三倍以上,这得益于更密集的晶体管布局和优化的电路设计。
  • 设计与功能:虽然具体的细节尚未完全公开,但可以预期的是,新一代芯片将包含更强大的CPU、GPU和NPU,以及优化的内存架构,以支持更复杂的神经网络和实时数据处理需求。

4. 总结

特斯拉的FSD芯片代表了该公司在垂直整合和自动驾驶技术方面的重大投资。通过设计自己的芯片,特斯拉能够优化硬件和软件之间的协同工作,从而实现更高的效率和更强大的自动驾驶功能。随着时间的推移,特斯拉继续更新其FSD硬件和软件,以实现更高级别的自动驾驶能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1837937.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【开源许可证】介绍

文章目录 概述具体总结 概述 开源许可证通常可以分为两大类:宽松式许可证及 Copyleft 许可证(也称著作权)。二者的差别主要在于宽松度以及与使用开源软件组件相关的要求和许可权限的多少。 当一个开源组件采用 Copyleft 许可证时&#xff0…

Java开发笔记Ⅲ (一些零碎记录)

一些报错处理 找不到注入的对象 可以在 dao 层 的接口上添加 Repository 注解 common 模块报错 Unable to find main class 由于common中只有一些常量与工具类,不需要主类,故出现该错误时只需删除pom文件中的build标签即可解决 网关模块报错 Failed…

STM32学习笔记(九)--串口 UART/USART详解

(1)配置步骤1.开启RCC外设时钟 开启GPIO以及USART外设2.初始化GPIO 配置TX复用输出 RX输入3.配置USART初始化结构体4.配置串口中断 ITConfig以及NVIC(如果需要USART中断)5.开启USART (2)代码示例 案例1 串…

配对交换00

题目链接 配对交换 题目描述 注意点 num的范围在[0, 2^30 - 1]之间,不会发生整数溢出 解答思路 第一个思路是每次取奇数位和偶数位,将两位上的数字交换并根据其所处的位置求得的值与res相加,重复此过程即可第二个思路是将所有的奇数位和…

Python酷库之旅-比翼双飞情侣库(16)

目录 一、xlwt库的由来 1、背景和需求 2、项目启动 3、功能特点 4、版本兼容性 5、与其他库的关系 6、示例和应用 7、发展历史 二、xlwt库优缺点 1、优点 1-1、简单易用 1-2、功能丰富 1-3、兼容旧版Excel 1-4、社区支持 1-5、稳定性 2、缺点 2-1、不支持.xls…

仓库管理系统的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,公告管理,物资管理,基础数据管理,用户管理 用户账户功能包括:系统首页,个人中心,公告管理,物…

华为HCIP Datacom H12-821 卷5

1.单选题 下列哪种工具不能被 route-policy 的 apply 子句直接引用? A、IP-Prefix B、tag C、community D、origin 正确答案: A 解析: 因route-policy工具中, apply 后面跟的是路由的相关属性。 但是ip-prefix是用来匹配路由的工具。 2…

Java基础学习-流程控制语句-顺序结构-分支结构-循环结构

目录 顺序结构: 分支结构: if语句: 第一种格式: if第二种格式: 案例练习 if第三种格式: switch语句: 格式: switch其他知识点: 循环结构: for循环…

[保姆级教程]uniapp配置vueX

文章目录 注意新建文件简单的使用 注意 uniapp是支持vueX的只需配置一下就好 新建文件 在src文件中,新建一个store(如果有的话跳过) 在store中新建一个js文件,修改js文件名称和选择模板为default 在 uni-app 项目根目录下&…

【C++】拷贝构造函数、拷贝赋值函数与析构函数

C中的拷贝构造函数、拷贝赋值函数与析构函数详解 一、拷贝构造函数(Copy Constructor)二、拷贝赋值函数(Copy Assignment Operator)三、析构函数(Destructor)四、总结 在C中,拷贝构造函数、拷贝…

java-SpringBoot执行定时任务-任务调度-@EnableScheduling和@Scheduled

文章目录 java借助springBoot框架,执行定时任务0. 项目地址1. 需求分析2、新建springBoot项目3. 编写定时任务3.1 开启调度任务3.2 编写定时任务方法 java借助springBoot框架,执行定时任务 0. 项目地址 https://github.com/OrangeHza/JavaDemo 1. 需求…

vue2 TypeError: compiler.plugin is not a function

俩个命令解决: npm i webpack-clilatest npm i webpacklatest

AI项目二十三:危险区域识别系统

若该文为原创文章,转载请注明原文出处。 一、介绍 在IPC监控视频中,很多IPC现在支持区域检测,当在区域内检测到有人闯入时,发送报警并联动报警系统,以保障生命和财产安全具有重大意义。它能够在第一时间检测到人员进入…

提升人工智能大模型的智能

前言 提升人工智能大模型的智能是一个涉及到多方面挑战和策略的复杂问题。下面是一些关键的策略和挑战,可以帮助我们更好地理解和处理这一问题。 策略 模型架构与深度优化: 深度学习架构优化:设计更深、更复杂的神经网络结构,如…

python GUI开发: tkinter菜单创建,记事本和画图软件综合项目的实战演练

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

【Nginx系列】反向代理在现代网络架构中的重要性

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

电动汽车厂商Rivian将全新设计元素融入由虚幻引擎驱动的车机界面

Rivian Automotive(简称:“Rivian”),是美国一家电动汽车厂商,该品牌创办于2009年,总部位于加州埃尔文,专注于生产电动皮卡车Rivian R1T和电动SUV Rivian R1S。 Rivian的车主们正追寻这样一条道…

做动画?Animatediff 和 ComfyUI 更配哦!

如果从工作流和内存利用率的角度来说,Animatediff 和 ComfyUI 可能更配一些,毕竟制作动画是一个很吃内存的操作。 首先,我们需要在管理器中下载 Animatediff 插件,当然也可以直接导入听雨的工作流,然后在管理器的安装…

Chromium 开发指南2024 Mac篇-开始编译Chromium(五)

1.引言 在之前的指南中,我们已经详细介绍了在 macOS 上编译和开发 Chromium 的准备工作。您学会了如何安装和配置 Xcode,如何下载和配置 depot_tools,以及如何获取 Chromium 的源代码。通过这些步骤,您的开发环境已经搭建完毕&am…

压力应变桥信号变送光电隔离放大模块PCB焊接式 差分信号输入0-10mV/0-20mV/0-±10mV/0-±20mV转0-5V/0-10V/4-20mA

概述: IPO压力应变桥信号处理系列隔离放大器是一种将差分输入信号隔离放大、转换成按比例输出的直流信号混合集成厚模电路。产品广泛应用在电力、远程监控、仪器仪表、医疗设备、工业自控等行业。该模块内部嵌入了一个高效微功率的电源,向输入端和输出端…