2024 年最新 Python 基于 LangChain 框架基础案例详细教程(更新中)

news2024/11/25 18:31:32

LangChain 框架搭建

安装 langchain

pip install langchain -i https://mirrors.aliyun.com/pypi/simple/

安装 langchain-openai

pip install langchain-openai -i https://mirrors.aliyun.com/pypi/simple/

ChatOpenAI 配置环境变量

在这里插入图片描述
环境变量

OPENAI_API_KEY=OpenAI API 密钥
OPENAI_BASE_URL=OpenAI API 基础 URL

OPENAI_API_KEY

这是你的 OpenAI API 密钥。当你注册 OpenAI 并创建一个新的 API 密钥时,你会得到一个唯一的密钥字符串。这个密钥用于在你的应用程序和 OpenAI API 之间进行身份验证。当你调用 OpenAI API 的任何端点时,你都需要在请求中包含这个 API 密钥。这通常是通过在请求头中添加一个 Authorization 字段来完成的,其值为 Bearer [你的API密钥]。

OPENAI_BASE_URL
这是 OpenAI API 基础 URL。对于大多数用户来说,这个值通常是固定的,并指向 OpenAI 的官方 API 服务器。但是,有些用户可能会出于各种原因(如使用自定义的 API 网关或代理)而需要更改这个值。

在这里插入图片描述
Model I / O 说明
在这里插入图片描述

本地知识库原理

在这里插入图片描述

ChatOpenAI invoke

ChatOpenAI 的 invoke 方法是用于触发与 ChatOpenAI 模型进行交互的函数。此方法的具体实现和参数可能会根据你所使用的库或框架而有所不同,但一般来说,其目标是向模型发送一个输入(如消息或文本),并接收模型的响应。

from langchain_openai import ChatOpenAI
import dotenv
dotenv.load_dotenv(".env")


llm = ChatOpenAI()
result = llm.invoke("hello")
print(result.content)

"""
result = llm.invoke("hello")
print(result)
content='Hello! How can I assist you today?' response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 8, 'total_tokens': 17}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-fe5d5321-dd8b-4585-9eba-4fb71a39937e-0' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}
"""

ChatPromptTemplate

LangChain 中的 ChatPromptTemplate 是用于在聊天领域构建特定提示模板的工具。它允许开发者在聊天环境中以结构化的方式创建提示,从而指导模型生成连贯且相关的输出。

创建使用

ChatPromptTemplate可以通过几种方式创建,包括使用列表和更具体的MessagePromptTemplates(如AIMessagePromptTemplate和HumanMessagePromptTemplate)。创建时,开发者可以指定角色(如AI或人类)和内容,从而定义对话的上下文和流程。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
import dotenv
dotenv.load_dotenv(".env")


llm = ChatOpenAI()

prompt = ChatPromptTemplate.from_messages([
    ("system", "你是边缘骇客机器人"),
    ("user", "{input}")
])

chain = prompt | llm
result = chain.invoke({"input": "你是谁?"})
print(result)

"""
content='我是边缘骇客机器人,专注于为您提供计算机和网络安全方面的帮助和建议。您有什么问题可以问我。' response_metadata={'token_usage': {'completion_tokens': 49, 'prompt_tokens': 29, 'total_tokens': 78}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-c9439b2d-e5c8-488b-9c72-384a2c4405db-0' usage_metadata={'input_tokens': 29, 'output_tokens': 49, 'total_tokens': 78}
"""

总结来说,LangChain的ChatPromptTemplate是一个强大的工具,用于在聊天场景中构建和管理提示。通过提供结构化和灵活的方式来创建聊天提示,它可以帮助开发者创建更加自然和连贯的对话体验。

TextLoader 文档加载

langchain_community 和 langchain 区别

langchain_community 和 langchain 在 LangChain 框架中分别担任不同的角色和功能。langchain_community 主要负责第三方集成。它提供了与各种外部服务和库(如数据库、API等)集成的接口和工具,扩展了 LangChain 的功能和应用范围。langchain 作为 LangChain 框架的核心部分,它提供了构建基于大型语言模型(LLM)的应用所需的组件和工具。这包括链(Chains)、代理(Agents)、检索策略等,用于构建复杂的业务流程和智能代理。

langchain_community 当开发者需要将其 LangChain 应用与特定的外部服务(如数据库、API等)集成时,会用到 langchain_community 提供的工具和接口。langchain 在构在这里插入代码片建基于 LLM 的应用时,开发者会使用 langchain 提供的链、代理和检索策略等组件来定义业务流程、处理任务和对话。

安装 langchain_community

pip install langchain_community

读取 document.txt 文档

from langchain_community.document_loaders import TextLoader

loader = TextLoader("document.txt", encoding="UTF-8")
data = loader.load()
print(data)
[Document(page_content='床前明月光,疑是地上霜。', metadata={'source': 'document.txt'})]

常见问题

from langchain.document_loaders import TextLoader

Please install langchain-community to access this module. You can install it using `pip install -U langchain-community`

WebBaseLoader 网络加载

在这里插入图片描述

详细源码

from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter


loader = WebBaseLoader("https://baike.baidu.com/item/%E9%9B%A8%E9%9C%96%E9%93%83/668352?fr=ge_ala")
data = loader.load()
print(data)

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
splits = text_splitter.split_documents(data)
print(len(splits))

Chroma 数据库

Chroma 数据库是一个高性能的向量数据库,专为处理大规模高维向量数据而设计。它采用高效的索引结构和算法,支持多种相似度度量标准,如欧氏距离和余弦相似度,能够快速且准确地完成向量搜索任务。

Chroma 数据库适用于各种需要处理高维向量数据的场景,如图像识别、自然语言处理、推荐系统等,具有分布式架构、数据压缩、容错恢复等特性,确保系统的稳定性和可扩展性。通过Chroma数据库,用户可以轻松构建高效、准确的向量搜索系统,实现数据的高效利用和价值挖掘。

安装 Chroma 数据库

pip install chromadb

详细源码

from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from dotenv import load_dotenv

load_dotenv(".env")

from langchain_openai import OpenAIEmbeddings

loader = WebBaseLoader("https://baike.baidu.com/item/%E9%9B%A8%E9%9C%96%E9%93%83/668352?fr=ge_ala")
data = loader.load()

# from langchain_text_splitters import RecursiveCharacterTextSplitter
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
# splits = text_splitter.split_documents(data)
# print(len(splits))


embedding_model = OpenAIEmbeddings()
db = Chroma.from_documents(documents=data, embedding=embedding_model)
print(db)

retriever = db.as_retriever(search_kwargs={'k': 1})
docs = retriever.get_relevant_documents("雨霖铃第一句")
print(docs)
<langchain_community.vectorstores.chroma.Chroma object at 0x0000017A90E4E810>

[Document(page_content='雨霖铃(词牌名)_百度百科······', 'language': 'No language found.', 'source': 'https://baike.baidu.com/item/%E9%9B%A8%E9%9C%96%E9%93%83/668352?fr=ge_ala', 'title': '雨霖铃(词牌名)_百度百科'})]

常见问题

pip install chromadb

ImportError: Could not import chromadb python package. Please install it with `pip install chromadb`.

BaseRetriever.get_relevant_documents

The method `BaseRetriever.get_relevant_documents` was deprecated in langchain-core 0.1.46 and will be removed in 0.3.0. Use invoke instead.
query_result = db.search("雨霖铃第一句", search_type='similarity')
print(query_result)

腾讯云向量数据库

地址:https://buy.cloud.tencent.com/vector

新建安全组

在这里插入图片描述
创建向量数据库实例

在这里插入图片描述
查看密钥

在这里插入图片描述
在这里插入图片描述

腾讯云 AI 套件

官方文档:https://cloud.tencent.com/document/product/1709/102189

什么是 AI 套件?

AI 套件是腾讯云向量数据库(Tencent Cloud VectorDB)提供的一站式文档检索解决方案,包含自动化文档解析、信息补充、向量化、内容检索等能力,并拥有丰富的可配置项,助力显著提升文档检索召回效果。用户仅需上传原始文档,数分钟内即可快速构建专属知识库,大幅提高知识接入效率。

设计思想

AI 套件检索方案提供完整的文档预处理和灵活的内容检索能力。用户只需上传 Markdown 格式的文档文件。腾讯云向量数据库将自动进行文本切分(Split)、信息补充、向量化(Embedding)和索引构建等一系列操作,完成知识库的建立。在进行检索时,会先基于切分后的内容进行相似度计算,并结合词(Words)向量进一步对检索结果进行精排,最终返回排名靠前的 Top K 条数据和其上下文内容。这种综合利用词级别做精排的检索方式,提供了更专业、更精确的内容检索体验。

在这里插入图片描述
AI 类 Database

AI 类 Database 是专门用于 AI 套件上传和存储文件的向量数据库系统,可用于构建知识库。用户可以直接将文件上传至 AI 类 Database 下的 CollectionView 中,自动构建个性化的知识库。

CollectionView 集合视图

AI 类数据库文档组的集合视图,由多个 DocumentSet 组成,每个 DocumentSet 存储一组数据,对应一个文件数据。多个 DocumentSet 构成一个 CollectionView。

DocumentSet 文档集合

相对 Document 来说 DocumentSet 是 AI 类数据库中存储在 CollectionView 中的非结构化数据,是文件被拆分成多个 Document 的集合。每个DocumentSet 存储一组数据,对应一个文件,是 CollectionView 下存储文件的最小单元。

Metadata 文件元数据

文件元数据 指上传文件时所携带的文件元数据信息,可以包括文件的名称、作者、创建日期、文件类型等信息。所有元数据被自动解析为标量字段,以Key-Value格式存储。用户可根据元数据构建标量字段的 Filter 索引,以检索并管理文件。

Word 词语

词语 是智能文档检索中最小的分割粒度,通常由一个或多个字符组成。在结果召回时,将对召回段落中所有 Words 进行相似性计算,以便于根据词向量进一步对检索结果做精排。

当前支持导入数据库的文件类型包含: Markdown、PDF、Word、PPT

使用 AI 套件上传文件、检索

GitHub 地址:https://github.com/Tencent/vectordatabase-sdk-python

pip install tcvectordb
URL=http://lb-mu3i2g1v-niutm5zpejq7oshw.clb.ap-shanghai.tencentclb.com:10000
KEY=mgeZvc1uQFaKVfnicx0roPaqPkVD3c9Hgy89K2CT
import os

import tcvectordb
import dotenv
dotenv.load_dotenv(".env")

vdbclient = tcvectordb.VectorDBClient(url=os.getenv("URL"), key=os.getenv("KEY"), username="root")


def vdbInit():
    db = vdbclient.create_ai_database("test_db")
    collView = db.create_collection_view("test_collView")
    collView.load_and_split_text(local_file_path="readme.md")
    print('upload file sucess')


def knowledgeSearch(query):
    db = vdbclient.database('test_db')
    collView = db.collection_view('test_collView')
    doc_list = collView.search(content=query, limit=3)
    knowledge = "根据问题检索到知识内容:\n"
    knowledge_id = 1
    for item in doc_list:
        knowledge += f"知识内容{knowledge_id}:\n{item.data.text}\n"
        knowledge_id += 1
    return (knowledge)


if __name__ == "__main__":
    vdbInit()
    query = input("请填写查询内容:")
    print(knowledgeSearch(query))

RAG 检索增强生成

技术背景

RAG 概念最初由 Facebook AI Research(FAIR)团队在 2020 年提出,并在论文《Retrieval-Augmented Generation for Knowledge-IntensiveNLPTasks》中进行了详细介绍。

应用场景

RAG 技术可以应用于各种需要利用外部知识来增强模型输出的情况,如知识密集型的自然语言处理任务、问答系统等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1834007.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在IDEA 2024.1.3 (Community Edition)中创建Maven项目

本篇博客承继自博客Windows系统Maven下载安装-CSDN博客 Maven版本&#xff1a;maven-3.9.5 修改设置&#xff1a; 首先先对Idea的Maven依赖进行设置&#xff1b;打开Idea&#xff0c;选择“Costomize”&#xff0c;选择最下边的"All settings" 之后找到Maven选项&…

聚四氟乙烯离心管 四氟反应管 消解管 PTFE螺口带盖管 特氟龙试管

一、产品介绍 样品悬浮液盛放在管状试样容器中&#xff0c;在离心机的高速旋转下&#xff0c;由于巨大的离心力作用&#xff0c;使悬浮的微小颗粒 以一定的速度沉降&#xff0c;从而与溶液得以分离。这种带密封盖或压盖的管状试样容器&#xff0c;就是离心管。 PTFE离心管&…

编程精粹—— Microsoft 编写优质无错 C 程序秘诀 03:强化你的子系统

这是一本老书&#xff0c;作者 Steve Maguire 在微软工作期间写了这本书&#xff0c;英文版于 1993 年发布。2013 年推出了 20 周年纪念第二版。我们看到的标题是中译版名字&#xff0c;英文版的名字是《Writing Clean Code ─── Microsoft’s Techniques for Developing》&a…

【面试干货】常见的编译时异常(运行时异常)及其处理

【面试干货】常见的编译时异常&#xff08;运行时异常&#xff09;及其处理 1、SQLException2、IOException3、FileNotFoundException4、ClassNotFoundException5、EOFException6、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在Jav…

电能表厂家的研发能力是实力的体现

电能表厂家的研发能力无疑是其整体实力的核心体现。一个拥有强大研发能力的电能表厂家&#xff0c;不仅能够持续推出具有竞争力的新产品&#xff0c;满足市场需求&#xff0c;还能引领行业发展&#xff0c;塑造企业品牌形象。 一、研发能力对电能表厂家的重要性 研发能力是电…

图纸管理的方法、图纸管理软件

图纸管理是一个复杂且关键的过程&#xff0c;它涉及到图纸的创建、存储、共享、修改、审核、存档和检索等多个环节。以下是根据参考文章总结的图纸管理的具体内容和方法&#xff1a; 一、图纸管理的目的 1、确保图纸的准确性&#xff1a;通过规范的管理流程和质量控制措施&…

Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.8:

Mvan 点击执行 mvn install https://repo1.maven.org/maven2/org/apache/maven/plugins/maven-antrun-plugin/1.8/maven-antrun-plugin-1.8.pom

小米手机怎么用代理换ip:步骤详解与实用指南

在数字化时代&#xff0c;网络安全与隐私保护日益受到重视。对于小米手机用户而言&#xff0c;使用代理换IP已成为提升网络安全性、访问特定网站或绕过地域限制的有效手段。本文将详细介绍如何在小米手机上设置代理以更换IP地址&#xff0c;帮助用户更好地保护个人信息和享受更…

【NOI-题解】1448. 随机体能测试1469. 数的统计1511. 数字之和为13的整数1846. 阿尔法乘积

文章目录 一、前言二、问题问题&#xff1a;1448. 随机体能测试问题&#xff1a;1469. 数的统计问题&#xff1a;1511. 数字之和为13的整数问题&#xff1a;1846. 阿尔法乘积 三、感谢 一、前言 本章节主要对嵌套循环的题目进行讲解&#xff0c;包括《1448. 随机体能测试》《1…

Swift开发——存储属性与计算属性

Swift语言开发者建议程序设计者多用结构体开发应用程序。在Swift语言中,结构体具有了很多类的特性(除类的与继承相关的特性外),具有属性和方法,且为值类型。所谓的属性是指结构体中的变量或常量,所谓的方法是指结构体中的函数。在结构体中使用属性和方法是因为:①匹别于结…

泛微开发修炼之旅--19ecode获取用户人员信息方案汇总及代码示例(含pc端和移动端)

文章详情链接&#xff1a;19ecode获取用户人员信息方案汇总及代码示例&#xff08;含pc端和移动端&#xff09;

Android Basis - Google Keybox

什么是Keybox Keybox 又称为Gooogle attestation key&#xff0c;是Google用于管理、统计运行GMS套件设备的一种手段。 通常我们会向Google申请keybox&#xff0c;结合可能得出货量&#xff0c;提供如下信息给到的Google。 1. fingerprint 2. device id 列表 举个例子&am…

(done) AFL 都有哪些阶段? Stage progress

参考资料&#xff1a;https://afl-1.readthedocs.io/en/latest/user_guide.html 所有阶段如下&#xff0c;包括详细的解释

下载lombok.jar包,简化类的代码

Download (projectlombok.org) 去这个网站下载lombok.jar包 打开这个包文件的位置,拖到项目lib文件夹: 在这里右键添加为库(Add as library)。 添加这三个注解即可&#xff0c;类里面不需要其他东西了

基于Python的垃圾分类检测识别系统(Yolo4网络)【W8】

简介&#xff1a; 垃圾分类检测识别系统旨在利用深度学习和计算机视觉技术&#xff0c;实现对不同类别垃圾的自动识别和分类。应用环境包括Python编程语言、主流深度学习框架如TensorFlow或PyTorch&#xff0c;以及图像处理库OpenCV等&#xff0c;通过这些工具集成和优化模型&a…

物联网技术-第3章物联网感知技术-3.3传感技术

目录 1.1什么是传感器 1.1.1生活中的传感器 1.1.2人的五官与传感器 1.1.3传感器的定义 1.1.4传感器的组成 1.2传感器的特性 1.2.1传感器的静态特征 1、灵敏度&#xff08;静态灵敏度&#xff09; 2.精度 3.线性度&#xff08;非线性误差&#xff09; 4.最小检测量&a…

UITableView初识之分组显示数据Demo

基本介绍 继承自UIScrollView&#xff0c;因此可以滚动。 需要Datasource 遵循UITableViewDataSource协议的OC对象&#xff0c;都可以是UITableView的数据源&#xff0c;该协议中的方法告诉UITableView如何显示数据。 关于UITableView UITableView显示分组数据&#xff0c;对应…

【Android】使用SeekBar控制数据的滚动

项目需求 有一个文本数据比较长&#xff0c;需要在文本右侧加一个SeekBar&#xff0c;然后根据SeekBar的上下滚动来控制文本的滚动。 项目实现 我们使用TextView来显示文本&#xff0c;但是文本比较长的话&#xff0c;需要在TextView外面套一个ScrollView&#xff0c;但是我…

【 ARMv8/ARMv9 硬件加速系列 3.5.1 -- SVE 谓词寄存器有多少位?】

文章目录 SVE 谓词寄存器(predicate registers)简介SVE 谓词寄存器的位数SVE 谓词寄存器对向量寄存器的控制SVE 谓词寄存器位数计算SVE 谓词寄存器小结SVE 谓词寄存器(predicate registers)简介 ARMv9的Scalable Vector Extension (SVE) 引入了谓词寄存器(Predicate Register…

美团Meitu前端一面,期望27K

面经哥只做互联网社招面试经历分享&#xff0c;关注我&#xff0c;每日推送精选面经&#xff0c;面试前&#xff0c;先找面经哥 1、做的主要是什么项目&#xff0c;桌面端的吗&#xff1f; 2、用的主要是什么技术栈&#xff1f;vue有了解吗&#xff1f; 3、移动端开发一般怎么…