大数据分析-二手车用户数据可视化分析

news2025/1/19 11:25:09

项目背景

在当今的大数据时代,数据可视化扮演着至关重要的角色。随着信息的爆炸式增长,我们面临着前所未有的数据挑战。这些数据可能来自社交媒体、商业交易、科学研究、医疗记录等各个领域,它们庞大而复杂,难以通过传统的数据处理和分析手段进行有效解读。正是在这样的背景下,数据可视化技术应运而生,以其直观、形象、易于理解的特点,成为连接数据与洞察的桥梁。数据可视化通过将抽象的数据转化为图表、图像等视觉元素,能够迅速揭示数据中的模式、趋势和关联,帮助人们快速理解复杂数据背后的含义。无论是数据分析师、商业决策者还是普通用户,都能够通过数据可视化工具轻松探索数据,发现新的见解,从而做出更明智的决策。

因此,在大数据时代,数据可视化技术的重要性不言而喻。它不仅是数据分析的重要工具,更是连接数据与洞察、促进跨领域合作的桥梁。随着技术的不断进步和应用场景的不断拓展,数据可视化将在未来发挥更加重要的作用,为我们揭示更多未知的数据奥秘。

本文以二手车市场数据给大家展示数据可视化的其中一种好看的方法。

数据集介绍

数据集来源于Kaggle,原始数据集为美国二手车市场用户数据,共有7906条,18个变量,各变量含义如下:

Sales_ID(销售ID)
name(二手车名称)
year(购车年份)
selling_price(二手车当前销售价格)
km_driven(总行驶公里数)
Region(使用地区)
State or Province(使用的州或省)
City(使用城市)
fuel(燃料类型)
seller_type(谁在出售汽车)
transmission(汽车的变速器类型)
owner(业主类型)
mileage(汽车行驶里程)
engine(发动机功率)
Max_power(最大功率)
torque(转矩)
seats(座位数)
sold(二手车是否售出)

可视化方法介绍

读入数据:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from plotly.offline import iplot 
import warnings
warnings.filterwarnings('ignore')
plt.rcParams ['font.sans-serif'] ='SimHei'      #显示中文
plt.rcParams ['axes.unicode_minus']=False       #显示负号 
df = pd.read_csv("UserCarData.csv")
df.head()

在这里插入图片描述
图没有截完!时间有限,下面我主要给大家科谱图形相关内容,别的就不作讲解,截图展示就行。

在这里插入图片描述
在这里插入图片描述

# 二手车名称分析
print(f"Most Used Sold Car '{df['name'].value_counts().idxmax()}'")
print(f"Lowest Used Car Sold '{df['name'].value_counts().idxmin()}'")
# 使用plotly的express模块来绘制前20个最常被售出的二手车的柱状图   
iplot(px.bar(  
    df['name'].value_counts()[:20],  # 使用前20个最常出现的二手车名称及其计数  
    labels={'value':'数量', 'name':'车名'},  # 设置图表的标签  
    color=df['name'].value_counts()[:20].index,  # 设置每个柱子的颜色为其对应的二手车名称  
    text_auto=True,  # 自动将计数值添加到柱子上  
    title='二手车销量Top20'  # 设置图表的标题  
))  

在这里插入图片描述

# 使用plotly的express模块来绘制前20个最常被售出的二手车年份的柱状图  
# 注意:这里先对计数进行排序,确保年份是按从高到低的顺序显示  
# 使用sort_index(ascending=False)确保年份是降序排列  
iplot(px.bar(  
    df['year'].value_counts()[:20].sort_index(ascending=False),  # 取前20个最常出现的年份并降序排序  
    labels={'value':'数量', 'year':'年份'},  # 设置图表的标签  
    color_discrete_sequence=['#c72320'],  # 设置所有柱子的颜色为指定的红色  
    text_auto=True,  # 自动将计数值添加到柱子上  
    title='二手车出售年份柱状图'  # 设置图表的标题  
).update_xaxes(type=('category'))  # 将x轴设置为类别类型,确保年份按正确的顺序显示  
)  

在这里插入图片描述

柱状图(Bar Chart):

  • 定义:柱状图,也称为条形图,是一种用于展示离散数据分布情况的图形。它通过一系列垂直或水平的条形来表示不同类别的数据,每个条形的长度(或高度)代表该类别数据的数值大小。
  • 特点:
    直观易懂:柱状图通过条形的高度或长度直接反映数据的数值大小,使得数据之间的对比一目了然。
    易于比较:当需要比较不同类别之间的数据时,柱状图可以清晰地展示它们之间的数量关系,帮助用户快速识别出数据的差异和趋势。
    支持多组数据:柱状图可以同时展示多组数据,每组数据使用不同的颜色或标记进行区分,便于用户进行多组数据的比较和分析。
    易于扩展:柱状图可以与其他数据可视化元素结合使用,如添加数据标签、图例、坐标轴等,以提供更丰富的信息。
  • 用途:
    数据分析:柱状图常用于数据分析中,帮助用户快速了解数据的分布情况和特征,发现数据中的规律和问题。
    业务报告:在业务报告中,柱状图可以用来展示销售数据、市场份额、用户活跃度等指标,帮助决策者了解业务状况并做出决策。
    科学研究:在科学研究领域,柱状图可以用来展示实验数据、调查结果等,帮助研究人员分析数据并得出结论。
# 使用plotly的express模块来绘制一个饼图,展示不同地区的二手车销售数量  
iplot(  
    px.pie(  
        values=df['Region'].value_counts(),  # 从df的'Region'列中获取每个地区的销售数量  
        names=['中部','西部','东部','南部'],  # 这里直接指定了地区的名称,但通常应该从数据中获取  
        title='分地区二手车销量占比图'  # 设置饼图的标题  
    ).update_traces(textinfo='label+percent')  # 更新图表的轨迹设置,添加标签和百分比信息  
)

在这里插入图片描述

# 燃料分析
print(f"Top Fuel Used in Used car '{df['fuel'].value_counts().idxmax()}'")
print(f"Least Fuel Used in Used car '{df['fuel'].value_counts().idxmin()}'")
unique_fuels = df['fuel'].unique().tolist()  # 获取所有唯一的燃料类型  
iplot(  
    px.pie(  
        values=df['fuel'].value_counts(),  # 获取每种燃料类型的频数
        names=unique_fuels,  # 使用实际的燃料类型列表  
        title='使用燃料类型占比图'  
    ).update_traces(textinfo='label+percent')  # 更新饼图的跟踪信息,以显示标签和百分比 
)  

在这里插入图片描述

# 打印最常见的卖家类型  
print(f"Most Type of Seller '{df['seller_type'].value_counts().idxmax()}'")  
# .value_counts() 方法统计'seller_type'列中每种卖家类型的频数  
# .idxmax() 方法返回频数最高的卖家类型的索引,即最常见的卖家类型  
  
# 使用plotly的express模块绘制一个饼图,展示不同卖家类型在二手车销售中的比例  
iplot(  
    px.pie(  
        values=df['seller_type'].value_counts(),  # 获取每种卖家类型的频数  
        names=['Individual','Dealer','Trustmark_Dealer'],  # 这里直接指定了卖家类型的名称,但可能与实际数据不匹配  
        title='二手车卖家类型占比图'  # 设置图表的标题  
    ).update_traces(textinfo='label+percent')  # 更新饼图的跟踪信息,以显示标签和百分比  
)  

在这里插入图片描述
饼图是一种用于表示不同类别的数据在总量中所占比例的图形。以下是关于饼图的详细解释:

  • 定义: 饼图(Pie
    Chart),也称为扇形图或圆饼图,是一个圆形图表,用于展示不同部分与整体之间的关系。它通过将圆形划分为若干个扇区(或称为“切片”),每个扇区代表一个数据类别,扇区的大小(即角度或面积)表示该类别在总体中所占的比例。
  • 特点: 直观性:饼图通过扇区的大小直观地展示不同类别在总体中的占比情况,易于理解和分析。
    完整性:所有扇区的面积之和等于整个圆的面积,即100%,这表示数据的完整性。
    对比性:通过对比不同扇区的大小,可以清晰地看出不同类别之间的比例关系。
  • 制作要点: 数据准备:首先,需要准备好需要展示的数据,并确保所有数据的总和为100%。
    扇区划分:根据数据的比例关系,将圆形划分为若干个扇区。每个扇区的角度或面积应与其在总体中所占的比例相对应。
    颜色选择:为了增强图表的可读性和美观性,可以为不同的扇区选择不同的颜色或图案。
    标注:在每个扇区中,可以添加相应的标签或百分比标注,以便更清晰地展示每个类别的具体占比情况。
  • 应用场景: 群体构成分析:如市场调研中,可以使用饼图展示不同年龄段、性别或教育程度的调查对象在总人口中的比例。
    投资组合分析:投资者可以使用饼图展示不同资产在投资组合中的比例,以便管理风险和优化投资组合。
    销售数据分析:通过饼图展示不同产品或服务在整体销售额中的占比情况,有助于企业了解各类产品或服务的销售情况,进而调整销售策略和资源分配。
    用户满意度调查:企业可以使用饼图展示用户对产品或服务的满意度分布情况,以便改进产品或服务,提升用户满意度和忠诚度。
# 打印销售二手车最多的省或州  
print(f"Top State or Province where Sold Used car '{df['State or Province'].value_counts().idxmax()}'")  
# .value_counts() 方法统计'State or Province'列中每个省或州的频数  
# .idxmax() 方法返回频数最高的省或州的索引,即销售二手车最多的省或州  
  
# 打印销售二手车最少的省或州  
# 注意:如果有多个省或州的计数都是最少的,那么这只会返回其中一个  
print(f"Least State or Province where Sold Used car '{df['State or Province'].value_counts().idxmin()}'")  
# .idxmin() 方法返回频数最低的省或州的索引,即销售二手车最少的省或州  
  
# 使用plotly的express模块绘制一个水平柱状图,展示销售二手车数量排名前30的省或州  
iplot(  
    px.bar(  
        df['State or Province'].value_counts().sort_values(ascending=True)[:30],  # 获取销售数量排名前30的省或州及其频数  
        orientation='h',  # 设置柱状图为水平方向  
        color=df['State or Province'][:30].index,  # 这里设置颜色通常不会按预期工作,因为这里索引可能与排序后的数据不匹配  
        title='二手车销售地区Top榜',  # 设置图表的标题  
        labels={'value':'销售数量'}  # 设置图表的标签,这里只设置了y轴(即省或州)的计数标签  
    )  
)  

在这里插入图片描述

# 打印销售二手车最多的城市  
print(f"Top City where Sold Used car '{df['City'].value_counts().idxmax()}'")  
# .value_counts() 方法统计'City'列中每个城市的频数  
# .idxmax() 方法返回频数最高的城市的索引,即销售二手车最多的城市  
  
# 打印销售二手车最少的城市  
# 注意:如果有多个城市的计数都是最少的,那么这只会返回其中一个  
print(f"Least City where Sold Used car '{df['City'].value_counts().idxmin()}'")  
# .idxmin() 方法返回频数最低的城市的索引,即销售二手车最少的城市  
  
# 使用plotly的express模块绘制一个柱状图,展示销售二手车数量排名前20的城市  
iplot(  
    px.bar(  
        df['City'].value_counts().sort_values(ascending=False)[:20],  # 获取销售数量排名前20的城市及其频数  
        color=df['City'][:20].index,  # 这里设置颜色通常不会按预期工作,因为这里的索引可能与排序后的数据不匹配  
        title='二手车销售城市Top榜',  # 设置图表的标题  
        labels={'value':'数量', 'City':'城市'},  # 设置图表的标签,这里设置了y轴的计数标签  
        text_auto=True  # 自动在柱状图上显示频数值  
    )  
)  

在这里插入图片描述

# 使用plotly的express模块绘制一个水平柱状图,展示二手售出车中最常见的20个转矩值  
  
# iplot 函数用于在Jupyter Notebook等环境中交互式地显示plotly图表  
iplot(  
    # 使用px.bar绘制水平柱状图  
    px.bar(  
        # 对'torque'列中的转矩值进行计数,并按计数降序排列,取前20个  
        df['torque'].value_counts().sort_values(ascending=False)[:20],    
        # 设置柱状图为水平方向  
        orientation='h',            
        # 尝试设置颜色,但这里使用df['torque'][:20].index是不正确的,因为它会取前20个转矩值的索引,而不是计数  
        # 应该使用一个颜色列表来指定柱状图的颜色  
        color=df['torque'][:20].index,  # 注释:这行代码可能是错误的,因为value_counts()的结果与原始数据的索引不匹配            
        # 设置图表的标题  
        title='二手车常见转矩TOP20',            
        # 设置图表的标签,但这里labels的用法可能不准确,plotly通常使用更直接的方式设置轴标签  
        labels={'value':'Count','torque':'Torque'}  # 注释:这行代码可能不会按预期工作,因为plotly使用不同的参数来设置轴标签  
    )  
    .update_traces(textposition='outside')  # (假设代码原本还包括这行)用于在柱状图外部显示数值标签  
    .update_layout(xaxis_title='Torque', yaxis_title='Count')  # 正确的设置轴标签的方式  
)  

在这里插入图片描述
水平柱状图,作为柱状图的一种变体,其特点在于条形是水平放置的,与常见的垂直柱状图形成对比。以下是关于水平柱状图的详细解释:

  • 定义:
    水平柱状图,也称为横向柱状图或条形图,是通过一系列水平放置的条形来展示不同类别的数据,其中条形的长度表示数据的数值大小。与垂直柱状图相比,水平柱状图在数据分类标签较长时更为适用。
  • 特点: 水平展示:与垂直柱状图不同,水平柱状图的条形是水平放置的,这使得在标签较长或需要更多空间展示标签时更为方便。
    易于阅读:水平柱状图同样能够清晰地展示数据的对比关系和分布情况,其直观性使得数据解读更为简单直接。
    适合长标签:当数据的分类标签较长时,水平柱状图可以更好地利用空间,避免标签之间的重叠或截断。
  • 用途: 数据对比:水平柱状图适用于展示不同类别数据之间的对比情况,如销售额、用户活跃度等。
    时间序列数据:尽管垂直柱状图在时间序列数据的展示上更为常见,但水平柱状图在某些情况下也能很好地体现数据随时间的变化情况。
    大屏展示:由于水平柱状图在大屏中占用的空间较大,因此在大屏数据可视化项目中,水平柱状图可以作为一种有效的展示方式。
  • 制作要点: 标签方向:由于条形是水平放置的,因此标签通常位于条形的下方或上方,以便与条形相对应。
    颜色搭配:与垂直柱状图一样,水平柱状图也需要注意颜色搭配的合理性,以确保图表的清晰度和美观度。
    数值标注:在每个条形上方或下方标注具体的数值,有助于更直观地了解数据的具体大小。
# 行驶里程分析
# 创建一个新的图形窗口,并设置其大小为宽度15英寸,高度6英寸  
plt.figure(figsize=(15,6))    
# 使用seaborn库中的kdeplot函数来绘制df['mileage']列(即行驶里程)的核密度估计图  
# fill=True参数表示填充曲线下的区域,使图形更加直观  
sns.kdeplot(df['mileage'], fill=True)    
# 设置x轴的标签为"Mileage",即行驶里程  
plt.xlabel("行驶里程")    
# 显示图形  
plt.show()

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
本篇废话不多,全是干货。

创作不易,点赞、评论、转发三连走起!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1832392.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Day 25:1807. 替换字符串中的括号内容

Leetcode 1807. 替换字符串中的括号内容 给你一个字符串 s ,它包含一些括号对,每个括号中包含一个 非空 的键。 比方说,字符串 “(name)is(age)yearsold” 中,有 两个 括号对,分别包含键 “name” 和 “age” 。 你知道…

Linux:生产消费模型 读者写者模型

Linux:生产消费模型 & 读者写者模型 生产消费模型阻塞队列基本结构构造与析构投放任务获取任务总代码 POSIX 信号量基本概念接口 环形队列基本结构构造与析构投放任务获取任务总代码 读者写者模型读写锁 生产消费模型 生产消费模型是一种用于处理多线程之间任务…

编译器优化入门(基于ESP32)

主要参考资料: kimi: https://kimi.moonshot.cn/ ESP-IDF 支持多种编译器,但默认情况下,它使用的是乐鑫官方提供的 Xtensa 编译器,这是一个针对 ESP32 芯片架构(Tensilica Xtensa LX6 微处理器)优化的交叉编…

大学课设项目,Windows端基于UDP的网络聊天程序的服务端和客户端

文章目录 前言项目需求介绍一、服务端1.对Udp套接字进行一个封装2. UdpServer的编写3. Task.h4.protocol.h的编写5.线程池的编写6.main.cc 二、客户端1. Socket.h2.protocol.h3.UdpClient4.menu.h5.main.cpp 三、运行图 前言 本次项目可以作为之前内容的一个扩展,学…

windows 11 之 下载安装 curl

1. 背景 需要执行一个 curl 命令运行一个定时任务,之前博主用的mac,无需担心这个下载安装问题,现在转为 windows,需要下载安装crul命令。 2. 出现问题 3. 解决办法 3.1 下载最新的包 下载地址:https://curl.se/win…

文档项目:攻坚克难

鉴于交流离心机存在的缺点:转速相对偏差、稳定精度不够高;带负载能力受外界扰动后,波动较大;寿命短,研究所各相关部门成立组成技术攻关团队,齐心协力,攻坚克难,在摸索中突破创新&…

推荐 3 款小巧的文件压缩、投屏和快速启动软件,请收藏,避免找不到

Maya Maya是一款由博主25H开发的体积小巧、简单易用的快速启动工具。它的操作逻辑和界面设计几乎复刻了Rolan早期版本,功能上与Rolan几乎别无二致。Maya支持多文件拖拽添加启动、快捷键呼出、自动多列显示等功能。此外,Maya还具备lnk文件解析功能。 May…

“Jedis与Redis整合指南:实现高效的Java应用与Redis交互“

目录 #. 概念 1. 导入jedis依赖 2. 写一个类(ping通redis) 3. String字符串使用 3.1 set,get方法使用(设值,取值) 3.2 mset,mget方法使用(设置多个值,取多个值&…

【雷丰阳-谷粒商城 】【分布式基础篇-全栈开发篇】【10】【仓库管理】【分布式基础篇总结】

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式基础篇-全栈开发篇】【10】【仓库管理】【分布式基础篇总结】 采购简要流程采购单采购人员的接口分布式基础篇总结参考 采购简要流程 采购单 可以搞个枚举: public class WareConstant {public enu…

2024中国应急(消防)品牌巡展成都站成功召开!

汇聚品牌力量,共同相聚成都。6月14日,由中国安全产业协会指导,中国安全产业协会应急创新分会、应急救援产业网联合主办,四川省消防协会协办的“一切为了安全”2024年中国应急(消防)品牌巡展-成都站成功举办。该巡展旨在展示中国应…

特殊医学用途配方食品注册数据库

在这个追求健康的时代,特殊医学用途配方食品(简称特医食品)已成为众多特殊需求人群的膳食选择。它们不仅满足了特定疾病状态下的营养需求,更是病患康复之路上的重要伴侣。然而,面对市场上琳琅满目的特医食品&#xff0…

如何完成独立接口测试

有时我们需要完成独立的接口测试工作,在经过上面的接口测试工作准备后,下面我们可以这样开展独立的接口测试工作。先快速的学习接口设计,有一个整体的认识,再确定接口测试工作目标,再经过第一阶段确认接口的功能能够正…

2-8 基于matlab的ESMD(Extreme-Point Symmetric Mode Decomposition)信号分解算法

基于matlab的ESMD(Extreme-Point Symmetric Mode Decomposition)信号分解算法,其基本思想是通过寻找数据序列中的极大值点和极小值点,并以此为基础进行信号分解。该方法在观测数据的趋势分离、异常诊断和时-频分析方面具有独特优势…

Redis 网络模型

一、用户空间和内核空间 1.1 linux 简介 服务器大多采用 Linux 系统,这里我们以 Linux 为例来讲解,下面有两个不同的 linux 发行版,分别位 ubuntu 和 centos,其实发行版就是在 Linux 系统上包了一层壳。 任何 Linux 发行版&#…

【排序算法】希尔排序详解(C语言)

文章目录 前言希尔排序的原理原理思路 代码实现希尔排序的相关问题效率算法稳定性 前言 为什么会有希尔排序,要从插入排序说起,希尔排序一开始设计出来是为了改进插入排序,因为插入排序在处理大量数据时效率不高,特别是对于近乎有…

结合Boosting理论与深度ResNet:ICML2018论文代码详解与实现

代码见:JordanAsh/boostresnet: A PyTorch implementation of BoostResNet 原始论文:Huang F, Ash J, Langford J, et al. Learning deep resnet blocks sequentially using boosting theory[C]//International Conference on Machine Learning. PMLR, 2…

Bagging与Boosting的应用与优势

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…

深浅拷贝以及正则表达式(python)

浅拷贝和深拷贝: 浅拷贝: copy函数是浅拷贝,支队可变类型的第一层对象进行拷贝,对拷贝的对象开辟显得内存空间进行存储,不会拷贝对象内部的子对象 不可变类型的浅拷贝示例: 浅拷贝不会对不可变类型进行…

KVB:怎么样选择最优交易周期?

摘要 在金融交易中,周期的选择是影响交易成败的重要因素之一。不同的交易周期对应不同的市场环境和交易策略,选择合适的周期可以提高交易的成功率。本文将详细探讨交易中如何选择最优周期,包括短周期、中周期和长周期的特点及适用情况&#…