泊松分布
泊松分布(Poisson Distribution)是描述在固定时间间隔内某事件发生次数的概率分布,特别适用于稀有事件的统计。假设随机变量 ( X ) 表示在时间间隔 ( t ) 内某事件发生的次数,并且该事件在单位时间内发生的平均次数为 ( \lambda )。那么 ( X ) 服从参数为 ( \lambda ) 的泊松分布,记作
泊松分布的概率质量函数(PMF)为:
P ( X = k ) = λ k e − λ k ! , k = 0 , 1 , 2 , … P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \ldots P(X=k)=k!λke−λ,k=0,1,2,…
期望值
期望值(Expectation)表示随机变量的平均值。对于泊松分布 ( X ),其期望值 ( \mathbb{E}(X) ) 定义为:
E ( X ) = ∑ k = 0 ∞ k ⋅ P ( X = k ) \mathbb{E}(X) = \sum_{k=0}^{\infty} k \cdot P(X = k) E(X)=k=0∑∞k⋅P(X=k)
代入泊松分布的概率质量函数:
E ( X ) = ∑ k = 0 ∞ k ⋅ λ k e − λ k ! \mathbb{E}(X) = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} E(X)=k=0∑∞k⋅k!λke−λ
我们将求和从 ( k = 1 ) 开始,因为当 ( k = 0 ) 时,项为零:
E ( X ) = ∑ k = 1 ∞ k ⋅ λ k e − λ k ! \mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} E(X)=k=1∑∞k⋅k!λke−λ
E ( X ) = λ ∑ j = 0 ∞ λ j e − λ j ! \mathbb{E}(X) = \lambda \sum_{j=0}^{\infty} \frac{\lambda^j e^{-\lambda}}{j!} E(X)=λj=0∑∞j!λje−λ
由泊松分布的性质,指数部分和概率质量函数的和为 1:
∑ j = 0 ∞ λ j e − λ j ! = 1 \sum_{j=0}^{\infty} \frac{\lambda^j e^{-\lambda}}{j!} = 1 j=0∑∞j!λje−λ=1
因此,
E ( X ) = λ ⋅ 1 = λ \mathbb{E}(X) = \lambda \cdot 1 = \lambda E(X)=λ⋅1=λ
方差
方差(Variance)表示随机变量与其期望值之间的离散程度。方差的定义为:
Var ( X ) = E [ ( X − E ( X ) ) 2 ] = E ( X 2 ) − ( E ( X ) ) 2 \text{Var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 Var(X)=E[(X−E(X))2]=E(X2)−(E(X))2
首先,我们计算 ( \mathbb{E}(X^2) )。利用泊松分布的性质,定义二阶矩:
E ( X 2 ) = ∑ k = 0 ∞ k 2 ⋅ P ( X = k ) \mathbb{E}(X^2) = \sum_{k=0}^{\infty} k^2 \cdot P(X = k) E(X2)=k=0∑∞k2⋅P(X=k)
代入泊松分布的概率质量函数:
E ( X 2 ) = ∑ k = 0 ∞ k 2 ⋅ λ k e − λ k ! \mathbb{E}(X^2) = \sum_{k=0}^{\infty} k^2 \cdot \frac{\lambda^k e^{-\lambda}}{k!} E(X2)=k=0∑∞k2⋅k!λke−λ
我们可以将 ( k^2 ) 分解为 ( k(k-1) + k ):
E ( X 2 ) = ∑ k = 0 ∞ ( k ( k − 1 ) + k ) ⋅ λ k e − λ k ! \mathbb{E}(X^2) = \sum_{k=0}^{\infty} (k(k-1) + k) \cdot \frac{\lambda^k e^{-\lambda}}{k!} E(X2)=k=0∑∞(k(k−1)+k)⋅k!λke−λ
拆开求和:
E ( X 2 ) = ∑ k = 0 ∞ k ( k − 1 ) ⋅ λ k e − λ k ! + ∑ k = 0 ∞ k ⋅ λ k e − λ k ! \mathbb{E}(X^2) = \sum_{k=0}^{\infty} k(k-1) \cdot \frac{\lambda^k e^{-\lambda}}{k!} + \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} E(X2)=k=0∑∞k(k−1)⋅k!λke−λ+k=0∑∞k⋅k!λke−λ
对于第一项,令 ( j = k-2 ):
∑ k = 0 ∞ k ( k − 1 ) ⋅ λ k e − λ k ! = λ 2 ∑ j = 0 ∞ λ j e − λ j ! = λ 2 \sum_{k=0}^{\infty} k(k-1) \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \lambda^2 \sum_{j=0}^{\infty} \frac{\lambda^j e^{-\lambda}}{j!} = \lambda^2 k=0∑∞k(k−1)⋅k!λke−λ=λ2j=0∑∞j!λje−λ=λ2
对于第二项,我们已经知道:
∑ k = 0 ∞ k ⋅ λ k e − λ k ! = λ \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \lambda k=0∑∞k⋅k!λke−λ=λ
因此,
E ( X 2 ) = λ 2 + λ \mathbb{E}(X^2) = \lambda^2 + \lambda E(X2)=λ2+λ
代入方差公式:
Var ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = λ 2 + λ − λ 2 = λ \text{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda Var(X)=E(X2)−(E(X))2=λ2+λ−λ2=λ
结论
对于泊松分布
,其期望值和方差分别为:
E ( X ) = λ \mathbb{E}(X) = \lambda E(X)=λ
Var ( X ) = λ \text{Var}(X) = \lambda Var(X)=λ
这些结果表明,在固定时间间隔内某事件发生的次数的平均值是 ( \lambda ),而离散程度也由 ( \lambda ) 决定。