StarNet实战:使用StarNet实现图像分类任务(一)

news2025/1/13 10:28:32

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 计算mean和std
  • 生成数据集

摘要

https://arxiv.org/pdf/2403.19967
论文主要集中在介绍和分析一种新兴的学习范式——星操作(Star Operation),这是一种通过元素级乘法融合不同子空间特征的方法,通过元素级乘法(类似于“星”形符号的乘法操作)将不同子空间的特征进行融合,从而在多个研究领域中展现出出色的性能和效率。

星操作在自然语言处理(NLP)和计算机视觉(CV)等多个领域中都得到了成功应用。例如,在自然语言处理中,Monarch Mixer、Mamba、Hyena Hierarchy和GLU等模型都采用了星操作;在计算机视觉中,FocalNet、HorNet和VAN等模型也利用了星操作进行特征融合。

尽管星操作在多个领域中都取得了显著成果,但其背后的基本原理尚未得到全面分析和验证。StarNet通过深入探究星操作的细节,发现星操作具有将输入映射到极高维、非线性特征空间的能力。这种映射方式与传统增加网络宽度的方法不同,而是通过跨通道特征对乘实现了一种类似于多项式核函数的非线性高维映射。

当将星操作融入神经网络并堆叠多层时,每一层都使隐含的维度复杂度呈指数级增长。这种高效的特征融合方式使得星操作能够在紧凑的特征空间内实现近乎无限的维度,从而极大地提高了模型的表示能力和性能。

在这里插入图片描述

本文使用StarNet模型实现图像分类任务,模型选择starnet_s1,在植物幼苗分类任务ACC达到了95%+。

在这里插入图片描述
在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现StarNet模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn

_logger = logging.getLogger(__name__)

class ModelEma:
    def __init__(self, model, decay=0.9999, device='', resume=''):
        # make a copy of the model for accumulating moving average of weights
        self.ema = deepcopy(model)
        self.ema.eval()
        self.decay = decay
        self.device = device  # perform ema on different device from model if set
        if device:
            self.ema.to(device=device)
        self.ema_has_module = hasattr(self.ema, 'module')
        if resume:
            self._load_checkpoint(resume)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def _load_checkpoint(self, checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        assert isinstance(checkpoint, dict)
        if 'state_dict_ema' in checkpoint:
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict_ema'].items():
                # ema model may have been wrapped by DataParallel, and need module prefix
                if self.ema_has_module:
                    name = 'module.' + k if not k.startswith('module') else k
                else:
                    name = k
                new_state_dict[name] = v
            self.ema.load_state_dict(new_state_dict)
            _logger.info("Loaded state_dict_ema")
        else:
            _logger.warning("Failed to find state_dict_ema, starting from loaded model weights")

    def update(self, model):
        # correct a mismatch in state dict keys
        needs_module = hasattr(model, 'module') and not self.ema_has_module
        with torch.no_grad():
            msd = model.state_dict()
            for k, ema_v in self.ema.state_dict().items():
                if needs_module:
                    k = 'module.' + k
                model_v = msd[k].detach()
                if self.device:
                    model_v = model_v.to(device=self.device)
                ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:
     model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device='cpu',
            resume=resume)

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    if model_ema is not None:
        model_ema.update(model)


# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

StarNet_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  └─starnet.py
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练StarNet模型
models:来源官方代码。

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())

if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1827722.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

521. 最长特殊序列 Ⅰ(Rust单百解法-脑筋急转弯)

题目 给你两个字符串 a 和 b,请返回 这两个字符串中 最长的特殊序列 的长度。如果不存在,则返回 -1 。 「最长特殊序列」 定义如下:该序列为 某字符串独有的最长 子序列 (即不能是其他字符串的子序列) 。 字符串 s …

从传统到智能:数字孪生在火电厂中的应用

通过图扑 HT 可视化技术数字孪生正在运行的火力发电厂,搭建数字化运营平台,对发电厂进行工厂式精细化的数字化管理,提升企业对整个发电厂业务进行数字化管理能力。

安装wsl

安装wsl 先决条件: 打开控制面板->选择程序与功能->选择启动或关闭windows功能,将以下框选的勾选上 二、到Mircosoft store下载Ubuntu 三、如果以上都勾选了还报以下错误 注册表错误 0x8007019e Error code: Wsl/CallMsi/REGDB_E_CLASSNOTREG…

gma 2.0.10 (2024.06.16) | GmaGIS V0.0.0a4 更新日志

安装 gma 2.0.10 pip install gma2.0.10网盘下载: 链接:https://pan.baidu.com/s/1P0nmZUPMJaPEmYgixoL2QQ?pwd1pc8 提取码:1pc8 注意:此版本没有Linux版! 编译gma的Linux虚拟机没有时间修复,本期Linux版…

QT信号与槽/窗口组件优化/使用QT制作QQ登录界面

使用手动连接,将登录框中的取消按钮使用第二中连接方式,右击转到槽,在该槽函数中,调用关闭函数 将登录按钮使用qt4版本的连接到自定义的槽函数中,在槽函数中判断u界面上输入的账号是否为"admin",…

2024.6.14 作业 xyt

使用手动连接,将登录框中的取消按钮使用第二中连接方式,右击转到槽,在该槽函数中,调用关闭函数 将登录按钮使用qt4版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c…

【面试干货】Integer 和 int 的区别

【面试干货】Integer 和 int 的区别 1、基本类型与包装类型2、内存占用3、自动装箱与拆箱4、null 值5、常量池6、总结 💖The Begin💖点点关注,收藏不迷路💖 在Java中,Integer 和 int 是两种不同类型的变量,…

在k8s中部署Elasticsearch高可用集群详细教程

🐇明明跟你说过:个人主页 🏅个人专栏:《洞察之眼:ELK监控与可视化》🏅 🔖行路有良友,便是天堂🔖 目录 一、引言 1、Elasticsearch简介 2、为什么在k8s中部署elasti…

【团队成长】2024-24周周报-第一次组会人员分工48期推文预告

大家好!我们是IndustryOR 团队,致力于分享业界落地的算法技术。欢迎关注微信公众号/知乎/CSDN【运筹匠心】 。 记录人:张哲铭,算法专家,某互联网大厂 【团队成长/个人成长】系列的推文会以 【工作周报】 的方式记录Ind…

视频信号发生器上位机

在液晶屏测试、电视机信号测试、视频处理器测试中,经常需要使用视频信号发生器,市场上专业的视频信号发生器通常需要大几千元,多则上万元,而且设备测试仪器是一套硬件,没有办法像软件一样复制传播。所以我开发了一套基…

机器视觉:工业镜头的主要参数

工业镜头是图像采集系统的重要光学设备。它的作用是将目标物体的像成在相机的感光面上。 一、工业镜头原理 镜头是对光线进行调制和变换,使目标能够成像到相机的感光芯片上。将不同折射率的硝材加工成高精度的曲面,再把这些曲面进行组合后设计成能够满…

LogicFlow 学习笔记——2. LogicFlow 基础 实例

LogicFlow 实例 创建实例 每一个流程设计界面&#xff0c;就是一个 LogicFlow 的实例。 <template><div id"container"></div><!-- 用于显示 LogicFlow 图表的容器 --> </template> <script>// 创建 LogicFlow 实例const lf …

中文版svn怎么忽略文件

个人需求&#xff1a; 不上传dist&#xff0c;dist.7z&#xff0c;node_modules等文件夹 实际操作&#xff1a; 前言&#xff1a;在上传svn为避免操作失败导致丢失文件的情况&#xff0c;保险起见&#xff0c;先备份代码 1&#xff1a;右键点击 2&#xff1a;点击新建 – 其…

C++初学者指南第一步---4.基本类型

C初学者指南第一步—4.基本类型 文章目录 C初学者指南第一步---4.基本类型1.变量声明2.快速概览Booleans 布尔型Characters 字符型Signed Integers 有符号整数Unsigned Integers 无符号整数Floating Point Types 浮点数类型 3.Common Number Representations 常用的数字表示常用…

C++访问Private,Protecd的一些方法总结

前言 在编写C程序中 我们偶尔会碰到这样的三种特殊修改变量值的需求&#xff1a; [1]在不修改类原本的实现下&#xff0c;访问修改类的Private变量 [2]在不修改类原本的实现下&#xff0c;修改类的Protected变量 Private变量访问 public类模版函数特化 这种办法利用了类模…

密码学-密码协议之零知识证明

一、前言 零知识证明实际上一种密码协议&#xff0c;该协议的一方称为证明者(Prover)&#xff0c;通常用P表示&#xff0c;协议的另一方是验证者(Verifier)&#xff0c;一般用V表示。零知识证明是指P试图使V相信某个论断是正确的&#xff0c;但却不向V提供任何有用的信息&…

springboot与flowable(7):流程变量

一、启动时添加流程变量 拿第一个流程图举例&#xff0c;创建一个新的流程定义。 Testvoid contextLoads() {DeploymentBuilder deployment repositoryService.createDeployment();deployment.addClasspathResource("process01/FirstFlow.bpmn20.xml");deployment.…

MFC工控项目实例之三theApp变量传递对话框参数

承接专栏《MFC工控项目实例之二主菜单制作》 用theApp变量传递对话框参数实时改变iPlotX坐标轴最小值、最大值。 1、新建IDD_SYS_DATA对话框&#xff0c;类名SYS_DATA。 三个编辑框IDC_EDIT1、IDC_EDIT2、IDC_EDIT3变量如图 2、SEAL_PRESSURE.h中添加代码 #include "re…

【单片机毕业设计选题24008】-基于单片机的寝室系统设计

系统功能: 1. 采用STM32最小系统板控制&#xff0c;将采集到温湿度光照等传感器数据显示在OLED上 2. 通过离线语音模块开关灯&#xff0c;风扇&#xff0c;门。 3. 监测到MQ2烟雾后触发报警。 4. 语音&手动&定时控制窗帘。 5. 按键开启布防模式&#xff0c;布防后…

java课设

项目简介:射击生存类小游戏 项目采用技术: 游戏引擎: Unity编程语言: Java图形处理: NVIDIA PhysX (物理引擎), HDRP (High Definition Render Pipeline)音效与音乐: FMOD, Wwise版本控制: Git 功能需求分析: 角色控制&#xff1a;玩家能够使用键盘和鼠标控制角色移动、瞄准…