[大模型]XVERSE-MoE-A4.2B Transformers 部署调用

news2024/11/25 14:35:40

XVERSE-MoE-A4.2B介绍

XVERSE-MoE-A4.2B 是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),使用混合专家模型(MoE,Mixture-of-experts)架构,模型的总参数规模为 258 亿,实际激活的参数量为 42 亿,本次开源的模型为底座模型 XVERSE-MoE-A4.2B,主要特点如下:

  • 模型结构:XVERSE-MoE-A4.2B 为 Decoder-only 的 Transformer 架构,将密集模型的 FFN 层扩展为专家层,不同于传统 MoE 中每个专家的大小与标准 FFN 相同(如Mixtral 8x7B ),使用了更细粒度的专家,每个专家是标准 FFN 大小的 1/4,并设置了共享专家(Shared Expert)和非共享专家(Non-shared Expert)两类,共享专家在计算时始终被激活,非共享专家通过 Router 选择性激活。
  • 训练数据:构建了 2.7 万亿 token 的高质量、多样化的数据对模型进行充分训练,包含中、英、俄、西等 40 多种语言,通过精细化设置不同类型数据的采样比例,使得中英两种语言表现优异,也能兼顾其他语言效果;模型使用 8K 长度的训练样本进行训练。
  • 训练框架:针对 MoE 模型中独有的专家路由和权重计算逻辑,进行了深入定制优化,开发出一套高效的融合算子,以提升计算效率。同时,为解决 MoE 模型显存占用和通信量大的挑战,设计了计算、通信和 CPU-Offload 的 Overlap 处理方式,从而提高整体吞吐量。

XVERSE-MoE-A4.2B 的模型大小、架构和学习率如下:

total paramsactivated paramsn_layersd_modeln_headsd_ffn_non_shared_expertsn_shared_expertstop_klr
25.8B4.2B28256032172864263.5e−4

但是 XVERSE 的仓库并没有更新更多的实践案例,还是需要大家丰富一下的,我有时间也会分享更多案例的。
有关 XVERSE-MoE-A4.2B 模型的相关报告可以看:元象首个MoE大模型开源:4.2B激活参数,效果堪比13B模型

讲讲显存计算

显存计算的考虑会随着模型类型不同,任务不同而变化

这里的Transformers部署调用是推理任务,因而只需要考虑模型参数、KV Cache、中间结果和输入数据。这里的模型为MoE模型,考虑完整模型参数(25.8B);使用了bf16加载,再考虑中间结果、输入数据和KV Cache等,大概是2x1.2x25.8的显存需求,所以我们后面会选择三卡共72G显存,显存要求还是挺大的大家根据自己条件自行尝试吧。

更完整的显存计算参照这个blog:【Transformer 基础系列】手推显存占用

环境准备

在autodl平台中租一个三卡3090等24G(共计72G)显存的机器,如下图所示镜像选择PyTorch–>2.1.0–>3.10(ubuntu22.04)–>12.1
接下来打开刚刚租用服务器的JupyterLab, 图像 并且打开其中的终端开始环境配置、模型下载和运行演示。
在这里插入图片描述

pip换源和安装依赖包

# 因为涉及到访问github因此最好打开autodl的学术镜像加速
source /etc/network_turbo
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# 从transformers的github仓库中安装包含XVERSE-MoE的新版本
# 如果安装不上可以使用 pip install git+https://github.moeyy.xyz/https://github.com/huggingface/transformers
pip install git+https://github.com/huggingface/transformers
# 安装需要的python包
pip install modelscope sentencepiece accelerate fastapi uvicorn requests streamlit transformers_stream_generator
# 安装flash-attention
# 这个也是不行使用 pip install https://github.moeyy.xyz/https://github.com/Dao-AILab/flash-attention/releases/download/v2.4.2/flash_attn-2.4.2+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.4.2/flash_attn-2.4.2+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

模型下载

使用ModelScope下载模型

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('xverse/XVERSE-MoE-A4.2B', cache_dir='/root/autodl-tmp', revision='master')

代码准备

在/root/autodl-tmp路径下新建trains.py文件并在其中输入以下内容

import torch  # 导入torch库,用于深度学习相关操作
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig  # 三个类分别用于加载分词器、加载因果语言模型和加载生成配置

# 将模型路径设置为刚刚下载的模型路径
model_name = "/root/autodl-tmp/xverse/XVERSE-MoE-A4.2B"

# 加载语言模型,设置数据类型为bfloat16即混合精度格式以优化性能并减少显存使用,将推理设备设置为`auto`自动选择最佳的设备进行推理,如果没有可用的GPU,它可能会回退到CPU
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 定义input字符串
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
# 使用分词器的apply_chat_template方法来处理messages,转换格式
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True # 在消息前添加生成提示
)
# 将text变量中的文本转换为模型输入的格式,指定返回的张量为PyTorch张量("pt")
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# 使用模型的generate方法来生成文本
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
# 从生成的ID中提取出除了原始输入之外的新生成的token
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# 使用分词器的batch_decode方法将生成的token ID转换回文本
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# 显示生成的回答
print(response)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1827622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

时机:产品成功的关键因子

在商业世界里,产品成功与否往往与许多因素有关:优秀的创意、强大的团队、充足的资金等。然而,在这些因素之外,一个常被忽视但至关重要的因素就是“时机”。正如古语所言:“人为可做,天时难造”,…

【idea】解决springboot项目中遇到的问题

一、Maven报错Could not find artifact com.mysql:mysql-connector-j:pom:unknown in aliyunmaven解决及分析 报错 创建springboot项目,勾选数据库驱动,springboot版本为3,现在改成了2.7.2,Maven就发生了报错Could not find art…

计算机组成原理历年考研真题对应知识点(计算机系统层次结构)

目录 1.2计算机系统层次结构 1.2.2计算机硬件 【命题追踪——冯诺依曼计算机的特点(2019)】 【命题追踪——MAR 和 MDR 位数的概念和计算(2010、2011)】 1.2.3计算机软件 【命题追踪——三种机器语言的特点(2015)】 【命题追踪——各种翻译程序的概念(2016)】 1.2.5计算…

文章MSM_metagenomics(五):共现分析

欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 介绍 本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等&…

享元和代理模式

文章目录 享元模式1.引出享元模式1.展示网站项目需求2.传统方案解决3.问题分析 2.享元模式1.基本介绍2.原理类图3.外部状态和内部状态4.类图5.代码实现1.AbsWebSite.java 抽象的网站2.ConcreteWebSite.java 具体的网站,type属性是内部状态3.WebSiteFactory.java 网站…

Tensorflow-GPU工具包了解和详细安装方法

目录 基础知识信息了解 显卡算力 CUDA兼容 Tensorflow gpu安装 CUDA/cuDNN匹配和下载 查看Conda driver的版本 下载CUDA工具包 查看对应cuDNN版本 下载cuDNN加速库 CUDA/cuDNN安装 CUDA安装方法 cuDNN加速库安装 配置CUDA/cuDNN环境变量 配置环境变量 核验是否安…

后端开发中缓存的作用以及基于Spring框架演示实现缓存

缓存的作用及演示 现在我们使用的程序都是通过去数据库里拿数据然后展示的 长期对数据库进行数据访问 这样数据库的压力会越来越大 数据库扛不住了 创建了一个新的区域 程序访问去缓存 缓存区数据库 缓存里放数据 有效降低数据访问的压力 我们首先进行一个演示 为了演示…

Python 全栈系列253 再梳理flask-celery的搭建

说明 最近做了几个实验,将结论梳理一下,方便以后翻看。 1 flask-celery 主要用于数据流的同步任务,其执行由flask-aps发起,基于IO并发的方法,达到资源的高效利用,满足业务上的需求。2 目前部署环境有算网…

餐厅点餐系统的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,商品管理,用户管理,店家管理,广告管理 店家账户功能包括:系统首页,个人中心,商品管理,广告管…

基于System-Verilog的流水灯设计与仿真

文章目录 一、system Verilog1.语言基本介绍2.过程赋值和连续赋值 二、编写testbench仿真1.流水灯testbench2.2位全加器3.实验结果 一、system Verilog 1.语言基本介绍 像 Verilog 和 VHDL 之类的硬件描述语言 (HDL) 主要用于描述硬件行为,以便将其转换为由组合门…

Python中的数据可视化:绘制三维线框图plot_wireframe()

【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 Python中的数据可视化: 绘制三维线框图 plot_wireframe() [太阳]选择题 在上面的代码中,plot_wireframe() 方法用于绘制什么类型的图形? import matplot…

无公网ip、服务器无法上网如何实现外网访问

在ipv4的大环境下,公网ip和车牌号一样抢手,一个固定公网ip价格非常昂贵,中小企业承担不起,也不愿意在上面投入;同时勒索病毒日益猖獗,企业信息化负责人为了保证数据安全性,干脆禁止服务器上外网…

LM339模块电路故障查询

最近的电路测试中出现一个问题,如果不接液晶屏,LM339输入端是高电平,如果接了液晶屏,输入端就是低电平,即使在输入端加了上拉电阻,还是如前面的结论,如果越过LM339,直接和后级电路连接&#xff…

纽约华尔街Wall Street 简介

中文版 华尔街简介 华尔街位于纽约市曼哈顿下城,是全球最重要的金融中心之一。它代表了美国的金融市场,并且是许多重要金融机构的所在地。以下是对华尔街的概述: Source: Google Map 历史背景 起源:"华尔街"这个名字…

springboot原理篇-springboot

springboot原理篇-springboot(三) 一、起步依赖 虽然我是直接学习springboot的,没有经历过使用spring开发,但是鉴于我还学习了c,对依赖这方面真的一言难尽!springboot起步依赖解决依赖问题我实在是羡慕! 直…

移动端超超超详细知识点总结(Part4)

rem基础 1. rem单位 rem (root em)是一个相对单位,类似于em,em是父元素字体大小。不同的是rem的基准是相对于html元素的字体大小。比如,根元素(html)设置font-size12px; 非根元素设置width:2rem;则换成px表示就是24p…

条件语句与循环结构

引言 条件语句和循环结构是C语言中构建程序逻辑的基本工具。它们允许程序根据条件执行不同的代码块和重复执行某些操作。本篇文章将详细介绍C语言中的条件语句和循环结构,包括if、else、switch语句,以及for、while、do-while循环的使用,帮助读…

【猫狗分类】Pytorch VGG16 实现猫狗分类1-数据清洗+制作标签文件

Pytorch 猫狗分类 用Pytorch框架,实现分类问题,好像是学习了一些基础知识后的一个小项目阶段,通过这个分类问题,可以知道整个pytorch的工作流程是什么,会了一个分类,那就可以解决其他的分类问题&#xff0…

JWT令牌、过滤器Filter、拦截器Interceptor

目录 JWT令牌 简介 JWT生成 解析JWT 登陆后下发令牌 过滤器(Filter) Filter快速入门 Filter拦截路径 过滤器链 登录校验Filter-流程 拦截器(Interceptor) Interceptor 快速入门 拦截路径 登录校验流程 JWT令牌 简介 全称:JSON Web Token(https://iwt.io/) …

可信计算和数字水印技术

可信计算 可信计算可信计算基础概述可信计算关键技术要素可信性认证可信计算优劣 数字水印技术数字版权保护技术 可信计算 可信计算基础概述 可信计算(Trusted Computing,TC):在计算和网络通信系统中广泛使用的、基于硬件安全模块…