【AI学习】Together AI的新研究:Together MoA(Mixture of Agents)

news2025/1/15 20:01:10

第一次听说Mixture of Agents,原来Agent也能混合,有意思!

介绍

Together AI的最新研究“Together MoA”(Mixture of Agents,代理混合)是一种创新的方法,旨在通过结合多个开源大型语言模型(LLMs)的集体智慧来增强单个模型的性能。该研究采用了分层架构,每一层包含多个LLM代理,这些代理各自具有不同的专长和优势。

在这里插入图片描述

具体来说,Together MoA使用六个开源模型作为提议者,并以Qwen1.5-110B-Chat作为最终的聚合器。这些开源模型包括WizardLM-2-8x22b、Qwen1.5-110B-Chat、Qwen1.5-72B-Chat和Llama-3-70B等。通过这种方式,Together MoA能够显著提升模型在各种任务上的表现,例如在AlpacaEval 2.0上的得分从GPT-4o的57.5%提高到了65.1%。

这种方法的核心思想是利用多个专家的集体智慧来解决更复杂的问题,类似于多个专家在团队中合作的情况。通过这种方式,Together MoA不仅提高了模型的生成效果,还推动了LLM能力边界的进一步发展。

总结来说,Together MoA通过结合多个开源大模型的集体优势,采用分层架构和代理混合的策略,显著提升了模型在各种任务上的性能,成为当前LLM领域的一个重要突破。

Mixture of Agents

研究基于一个关键的观察结果,称之为LLM的协作性 - 当呈现其他模型的输出时,LLM往往会产生更好的响应,即使这些其他模型本身的能力较差。

为了调查这种现象是否在开源模型中普遍存在,利用其他模型的响应时评估了分数。图 2 显示,每个模型在 AlpacaEval 2.0 上的基本分数都显著增加。即使参考响应质量低于模型自身的质量,也会发生这种改进。
在这里插入图片描述
为了有效地利用多个 LLM 的协作,根据他们在协作的不同方面的优势对他们的角色进行分类:

提议者:这些模型生成初始参考响应。虽然提议者可能会自己产生高质量的回应,但其主要价值在于提供细致入微和多样化的观点,作为聚合者的宝贵参考。
聚合器:这些模型将提案者的不同响应综合成一个单一的、高质量的响应。

基于这种分类,提出了一个分层过程来改进响应,如图 1 所示。最初,几个提议者独立地生成对给定提示的响应。然后,这些响应将呈现给下一层的聚合器,聚合器将它们合成更高质量的响应。这个迭代过程会持续到几个层次,直到实现更强大、更全面的响应。

MoA 共同使用六个开源模型作为提议者,Qwen1.5-110B-Chat 作为最终聚合器。测试的六个开源模型是:WizardLM-2-8x22b、Qwen1.5-110B-Chat、Qwen1.5-72B-Chat、Llama-3-70B-Chat、Mixtral-8x22B-Instruct-v0.1、dbrx-instruct。设计的MoA共有三层,在质量和性能之间取得了良好的平衡。
MoA-Lite 一起使用相同的提议器集,但使用 Qwen1.5-72B-Chat 作为聚合器,并且只有两层。
带有 GPT-4o 的 MoA 也使用同一组提议器,并具有三层,但最终聚合器更改为 GPT-4o。
在三个标准基准上展示了评估结果:AlpacaEval 2.0、MT-Bench 和 FLASK。选择这些基准是为了全面评估方法的性能,并与最先进的 LLM 进行比较。 具体来说,在 AlpacaEval 2.0 排行榜和 MT-Bench 上都名列前茅。值得注意的是,在 AlpacaEval 2.0 上,仅使用开源模型,实现了 7.6% 的绝对改进,从 57.5% (GPT-4o) 到 65.1% (Together MoA)。Together MoA-Lite 配置尽管层数更少且更具成本效益,但仍然取得了与 GPT-4o 相当的分数。

结论和未来方向
MoA 通过连续的协作阶段共同利用多个开源 LLM 的优势,与强大的闭源模型相比,具有卓越的性能。这项研究强调了增强人工智能系统的潜力,使它们更有能力、更强大并与人类推理保持一致。

展望未来,对几个潜在的未来方向感兴趣。一个关键的兴趣领域是MoA架构的系统优化,探索模型、提示和架构配置的各种选择。计划优化第一个Token的时间延迟,并有许多期望将显着提高性能的技术。此外,下一步的目标是评估和优化 Together MoA,以完成更多以推理为中心的任务,进一步增强其应对 AI 中复杂而微妙的挑战的能力。

文章链接:https://www.together.ai/blog/together-moa?continueFlag=73a51343b42e6d9e8e3db83cc8bb0f7f

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1827401.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Postman使用教程(Postman详细图文教程)

本文讲解的是postman工具安装、postman安装教程、postman工具下载、postman使用教程。Postman使得得开发人员和测试人员能够更高效地与Web服务进行交互和调试。 Postman不仅支持常见的HTTP方法,如GET、POST、PUT、DELETE等,还提供了丰富的请求编辑功能&…

Linux---防火墙

文章目录 目录 文章目录 前言 一.静态防火墙:iptables iptables五链 iptables 四表 iptables控制类型 iptables命令配置 前言 这儿主要介绍Linux系统本身提供的软件防火墙的功能,即数据包过滤机制。 数据包过滤,也就是分析进入主机的网络数…

Ubuntu20.04配置ORBSLAM2并在kitti数据集序列进行实验

一、ORB-SLAM2 安装和编译 1.ORB-SLAM2下载 用以下命令在终端上下载 git clone https://github.com/raulmur/ORB_SLAM2 2.安装Pangolin 在下载了ZIP压缩包后解压缩放在ubantu的/home下(此处只要是英文路径都可以),但别急着安装Pangolin我…

STM32项目分享:智慧农业(机智云)系统

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 1.PCB图 2.PCB板打样焊接图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片: 哔哩哔哩视频链接: https://www.bilibili.c…

PCIe总线-RK3588 PCIe子系统简介(八)

1.PCIe子系统 RK3588 PCIe子系统如下图所示。总共拥有5个PCIe控制器。PCIe30X4(4L)支持RC和EP模式,其他4个仅支持RC模式。ITS port 1连接PCIe30X4(4L)和PCIe30X2(2L)控制器,PCIe30X4(4L)和PCIe30X2(2L)控制器使用PCIe3.0 PIPE PHY。ITS port 0连接PCIe3…

mysql:简单理解mysql mvcc的可重复读

# 原理 假设有这样的sql begin select(或update、insert、delete) ... commit当执行【begin】的时候,标记有一个新事务要开始,但是事务还没有真正开始,事务id还没有产生当执行事务里面的第一个sql语句时(…

VCG显示——汉字,数字,图像

详细的介绍资料: 【从零开始走进FPGA】 玩转VGA http://www.cnblogs.com/spartan/archive/2011/08/16/2140546.html 【FPGA实验】基于DE2-115平台的VGA显示_vga接口实验 de2-115-CSDN博客 【FPGA】VGA显示文字、彩条、图片——基于DE2-115-CSDN博客 一.VCG原理 1.1…

区块链中的gas与转账收款相关概念

区块链是一个经济系统 计算与存储系统都是稀缺的,区块链的工作需要消耗资源共识、trustless需要矿工的工作,而矿工需要激励Transaction的执行有成本(gas),gas费成为矿工的奖励ether是这个经济生态系统的通行货币 关心的问题 合…

Stable Diffusion vs DALL·E3

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技(Mamba,xLSTM,KAN)则提…

父亲节:我要做爸爸的健康监督员

父亲节将至,总想着能为爸爸做些什么,来表达我们的感激与关爱。在这个特殊的日子里,成为爸爸的健康监督员,用华为 Watch 4 的智慧健康功能,任何时刻都可以关注爸爸的健康状况,放心又安心了。 用一键微体检…

C++ 50 之 继承中的对象模型

继承中的对象模型 在C编译器的内部可以理解为结构体&#xff0c;子类是由父类成员叠加子类新成员而成&#xff1a; #include <iostream> #include <string> using namespace std;class Base03{ public:int m_a; protected:int m_b; private:int m_c; // 哪怕是…

DNS域名解析----分离解析、多域名解析、父域与子域

1 理论部分 1.1 分离解析 DNS的分离解析&#xff0c;是指根据不同的客户端提供不同的域名解析记录。来自不同地址的客户机请求解析同一域名时&#xff0c;为其提供不同的解析结果。也就是内外网客户请求访问相同的域名时&#xff0c;能解析出不同的IP地址&#xff0c;实现负载…

汇编:Linux汇编基本框架与系统调用

在Linux操作系统下进行汇编编程时&#xff0c;基本的汇编程序框架通常包括以下几个部分&#xff1a; ①全局段声明&#xff08;section declarations&#xff09;&#xff1a;定义数据段、代码段等。 ②入口点&#xff08;entry point&#xff09;&#xff1a;程序的执行起点…

Python 显示笔记本电脑的电池状态和百分比

方法一&#xff1a; import psutil import psutil battery psutil.sensors_battery() if battery is None:print("No battery is found.")exit() print (battery) percentagebattery.percent print(f"Battery Percentage: {percentage}%")Battery的信息…

一个在C#中集成Python的例子

一个在C#中集成Python的例子。在C#中可以执行Python脚本&#xff0c;在Python中也可以调用C#宿主中的功能&#xff08;clr.AddReference(Business)&#xff09;。 文件说明 Debug为执行目录 Mgr.exe为执行文件 Py\init.py为python初始化脚本 Py\Lib.zip为python需要的模块&…

数据库 | 期末复习专题(HBUT 韩洪木)

总结&#xff1a; 考研数据库系统概论题目整理_若视图的属性来自聚集函数、表达式,则该视图是可以更新的。-CSDN博客 数据库系统概论 ---知识点大全&#xff08;期末复习版&#xff09;_数据库系统概论期末复习-CSDN博客 1.数据库系统&#xff08;DBS&#xff09;的组成&#…

第一篇:容器化的未来:从Docker的革命到云原生架构

容器化的未来&#xff1a;从Docker的革命到云原生架构 1. 引言 在当今快速演进的技术领域&#xff0c;容器化技术已经成为云计算和微服务架构的重要组成部分。该技术以其高效的资源利用率、快速的部署能力和卓越的隔离性能&#xff0c;彻底改变了软件开发和部署的方式。容器化…

【Pytorch】一文向您详细介绍 model.eval() 的作用和用法

【Pytorch】一文向您详细介绍 model.eval() 的作用和用法 下滑查看解决方法 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高校的普通本硕…

深入浅出談 隐马尔可夫的概念(1/ 2)

文章目录 一、说明二、Markov Chain三、Introduction四、State Sequence五、Comment六、介绍隐藏式马可夫法则。七、隐藏马尔可夫Introduction八、结论 一、说明 在许多机器学习的章节中&#xff0c;常常遇见 HMM &#xff0c;往往看到它的数学式子后&#xff0c;就当没看到似…

[Algorithm][贪心][K次取反后最大化的数组和][身高排序][优势洗牌][最长回文串]详细讲解

目录 1.K 次取反后最大化的数组和1.题目链接2.算法原理详解3.代码实现 2.身高排序1.题目链接2.算法原理详解3.代码实现 3.优势洗牌1.题目链接2.算法思路详解3.代码实现 4.最长回文串1.题目链接2.代码实现 1.K 次取反后最大化的数组和 1.题目链接 K 次取反后最大化的数组和 2.…