【机器学习】LightGBM: 优化机器学习的高效梯度提升决策树

news2025/2/22 20:37:21

鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

      • LightGBM: 优化机器学习的高效梯度提升决策树
        • 引言
        • 一、LightGBM概览
        • 二、核心技术解析
          • 1. 直方图近似(Histogram Approximation)
          • 2. 基于梯度的单边采样(Gradient-Based One-Side Sampling, GOSS)
          • 3. 特征并行与数据并行
        • 三、与其他GBDT实现的对比
        • 四、实践应用与调参技巧
        • 五、结论

LightGBM: 优化机器学习的高效梯度提升决策树

引言

在机器学习领域,梯度提升决策树(Gradient Boosting Decision Tree, GBDT)因其强大的预测能力和解释性而备受推崇。随着数据规模的日益增大,对模型训练速度和效率的需求也愈发迫切。在此背景下,Microsoft Research于2017年开源的LightGBM项目,凭借其高速度、高效率以及优秀的性能,在众多GBDT框架中脱颖而出,成为业界和学术界的新宠。本文将深入探讨LightGBM的核心优势、工作原理、关键特性和应用场景,旨在为读者提供一份全面而深入的理解指南。
在这里插入图片描述

一、LightGBM概览

诞生背景:面对传统GBDT在处理大规模数据集时遇到的内存消耗大、训练时间长等问题,LightGBM应运而生,它通过一系列创新算法设计显著提高了训练效率。

核心特点

  • 高效性:利用直方图近似和基于梯度的单边采样等技术,大幅减少计算量。
  • 低内存消耗:通过叶子权重直方图存储方式,极大降低了内存使用。
  • 高并行性:支持特征并行、数据并行和投票并行等多种并行策略,加速训练过程。
  • 灵活性:支持自定义目标函数和评估指标,满足多样化需求。
二、核心技术解析
1. 直方图近似(Histogram Approximation)

传统的GBDT方法在每一轮迭代中需要遍历所有数据来计算梯度,这在大数据场景下极为耗时。LightGBM引入了直方图的概念,将连续的特征值离散化为几个区间,仅需统计每个区间内的样本数量和梯度统计量,从而大大减少了计算量,加速了训练过程。
在这里插入图片描述

2. 基于梯度的单边采样(Gradient-Based One-Side Sampling, GOSS)

GOSS是一种有效的样本抽样策略,它根据样本的梯度大小进行有偏抽样,保留梯度较大的样本和一部分梯度较小的样本,这样既保留了重要信息,又大幅度减少了计算量,进一步提升了效率。
在这里插入图片描述

3. 特征并行与数据并行
  • 特征并行:将特征分配到不同的机器上进行独立的直方图构建,然后合并这些直方图,适用于特征维度较高的情况。
  • 数据并行:将数据集分割到不同机器,每台机器上分别建立自己的决策树,最后汇总决策树结果,适用于大数据集。
    在这里插入图片描述
三、与其他GBDT实现的对比

与XGBoost相比,LightGBM在训练速度和内存使用上通常表现更优,特别是在数据量较大时。然而,XGBoost提供了更多的调参选项,对于高度定制化的任务可能更为灵活。两者各有千秋,选择应依据具体任务需求。

四、实践应用与调参技巧

应用领域:LightGBM广泛应用于推荐系统、搜索引擎排名、金融风控、医疗诊断等多个领域,以其高效、准确的特性解决了一系列实际问题。

调参建议

  • 学习率:初始值可设为0.1,过拟合时减小。
  • 树的最大深度:默认31,可根据数据复杂度调整。
  • 叶子节点最小样本数:控制模型复杂度,避免过拟合。
  • 特征抽样比例:通过调整feature_fraction参数平衡模型复杂度与性能。

以下是一个使用Python和LightGBM库进行分类任务的基本示例代码。这个例子中,我们将使用经典的鸢尾花(Iris)数据集来训练一个简单的LightGBM模型,并进行基本的模型评估。代码仅供参考🐶

# 导入所需库
import lightgbm as lgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report

# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 转换数据格式为LightGBM所需的类型
lgb_train = lgb.Dataset(X_train, label=y_train)
lgb_eval = lgb.Dataset(X_test, label=y_test, reference=lgb_train)

# 设置参数
params = {
    'boosting_type': 'gbdt',
    'objective': 'multiclass',
    'num_class': 3, # 因为鸢尾花数据集有3个类别
    'metric': 'multi_logloss',
    'num_leaves': 31,
    'learning_rate': 0.1,
    'feature_fraction': 0.9,
    'bagging_fraction': 0.8,
    'bagging_freq': 5,
    'verbose': 0
}

# 训练模型
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=20, # 可以根据需要调整迭代轮数
                valid_sets=lgb_eval,
                early_stopping_rounds=5)

# 预测
y_pred = gbm.predict(X_test)
y_pred_class = y_pred.argmax(axis=1) # 将概率转换为类别

# 评估
accuracy = accuracy_score(y_test, y_pred_class)
print("Accuracy:", accuracy)
print("\nClassification Report:\n", classification_report(y_test, y_pred_class))

这段代码首先导入必要的库和数据集,然后划分训练集和测试集。接着,它将数据转换为LightGBM可以处理的格式,并定义了模型的参数。之后,模型通过训练数据进行训练,并在测试集上进行预测。最后,我们计算并打印出模型的准确率和分类报告,以便评估模型的表现。

五、结论

LightGBM作为GBDT家族中的佼佼者,凭借其高效的算法设计和优异的性能表现,成为了现代机器学习领域不可或缺的工具之一。无论是处理大规模数据集,还是追求模型训练速度与资源效率的平衡,LightGBM都展现出了强大的竞争力。随着算法的持续优化和社区的不断贡献,我们有理由相信,LightGBM将在未来机器学习的探索之路上扮演更加重要的角色。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1825443.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微服务开发与实战Day08 - Elasticsearch

一、初始Elasticsearch 高性能分布式搜索引擎 1. 认识和安装 1.1 认识 Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene Lucene的优势&…

誉天教育近期开班计划(6月15日更新)

云计算HCIP 周末班 2024/6/15 田老师 售前IP-L3 周末班 2024/6/15 陈老师 RHCA442 晚班 2024/6/17邹老师 数通HCIE 晚班 2024/6/24阮老师 云计算HCIE直通车晚班 2024/6/25 曾老师 售前IT-L3 周末班 2024/6/29 伍老师 数通HCIP 晚班 2024/7/1杨老师 存储直通车 晚班 2024/7/1 高…

【ARMv8/ARMv9 硬件加速系列 3 -- SVE 指令语法及编译参数详细介绍】

文章目录 SVE 汇编语法SVE 单通道谓词SVE 测试代码 SVE 软件和库支持SVE 编译参数配置-marcharmv8-alseprofilememtagsve2-aessve2-bitpermcryptosve2sve2-sha3sve2-sm4 SVE 汇编语法 在介绍 SVE 汇编指令语法之前,先介绍下如何判断自己所使用的芯片是否实现了SVE功…

算法01 递推算法及相关问题详解【C++实现】

目录 递推的概念 训练:斐波那契数列 解析 参考代码 训练:上台阶 参考代码 训练:信封 解析 参考代码 递推的概念 递推是一种处理问题的重要方法。 递推通过对问题的分析,找到问题相邻项之间的关系(递推式&a…

践行国产化替代,优刻得私有云勇当先锋

编辑:阿冒 设计:沐由 阳泉,十万火急! 位于太行山西麓的山西省阳泉市,是一座历史悠久、底蕴深厚、资源丰富的名城,拥有超百万常住人口,国内生产总值在2022年成功跨越千亿元大关。然而&#xff0c…

leetcode 56合并区间

思路 合并就是首先应该按照left左边界排序,排完序以后,如果i的左边界小于等于i-1的右边界,说明有重合,此时这两个可以合并,右边界应该取最大值。 代码 排序 我是定义了一个类,存储左右边界,先将数组转化…

传输层udp和tcp协议格式

UDP协议 UDP协议端格式 udp的前八个字节是报头,后面部分就是有效载荷。而目的端口号就保证了udp向应用层交付的问题。 而针对于报头和有效载荷分离是根据固定八字结的报头长度。数据的长度就是取决于报头中udp长度字段的大小来确定udp报文长度,因此也可…

【Matlab编程学习】 | matlab语言编程基础:常用图形绘制基础学习

🎩 欢迎来到技术探索的奇幻世界👨‍💻 📜 个人主页:一伦明悦-CSDN博客 ✍🏻 作者简介: C软件开发、Python机器学习爱好者 🗣️ 互动与支持:💬评论 &…

C++面向对象程序设计 - 函数库

C语言程序中各种功能基本上都是由函数来实现的,在C语言的发展过程中建立了功能丰富的函数库,C从C语言继承了些函数功能。如果要用函数库中的函数,就必须在程序文件中包含文件中有关的头文件,在不同的头文件中,包含了不…

解决Unity-2020 安卓异形屏黑边

背景 Unity 2020.3.17 版本开发的游戏,打apk包,发现两个问题 如图下午所示,实体白色导航栏,阻挡了整个安卓UI界面,难看还影响美观。 安卓系统 12-13 版本手机,异形屏。一侧安全区黑边遮挡,占空间…

pyinstall打包exe报错

1- 报错 Please install pywin32-ctypes. 前提:python安装路径中已经安装了pywin32-ctypes。 运行pyinstaller报错 PyInstaller cannot check for assembly dependencies. Please install pywin32-ctypes. 解决思路: python安装路径下Lib\site-packa…

远程连接路由器:方法大全与优缺点解析

远程连接路由器的方式主要有以下几种,以下是每种方式的详细说明及其优缺点: 使用Web浏览器登录 方法:通过配置路由器的远程管理功能,允许用户通过互联网浏览器访问路由器的管理界面。用户只需输入路由器的公网IP地址或域名&#…

JavaSE 面向对象程序设计 包装类 纯理论详解以及相关综合练习

包装类 实质 基本数据类型对应的引用数据类型 把基本数据类型变成对象 创建对象后 在栈内存里开辟空间 在堆内存里开辟空间 成员变量记录数值 栈内存记录对象的地址 包装类就是创建一个对象,对象记录相应的数据值 用一个对象把数据包装起来 作用 Java中万…

[leetcode]将二叉搜索树转化为排序的双向链表

. - 力扣(LeetCode) /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node() {}Node(int _val) {val _val;left NULL;right NULL;}Node(int _val, Node* _left, Node* _right) {val _val;left _left;right _rig…

新火种AI|苹果终于迈进了AI时代,是创新还是救赎?

作者:一号 编辑:美美 苹果的AI战略,能够成为它的救命稻草吗? 苹果,始终以其独特的创新能力引领着行业的发展方向。在刚结束不久的2024年的全球开发者大会(WWDC)上,苹果再次证明了…

iSlide软件下载附加详细安装教程

​iSlide 是一款基于 PPT 的插件工具,包含 52 个设计辅助功能,9 大在线资源库,超 50 万专业 PPT 模板/素材 支持 macOS 和 Windows 系统(兼容 Office 和 WPS)。 可以对一组元素(文本框,图形&…

制作自己的 @OnClick、@OnLongClick(告别 setOnClickListener,使用注解、反射和动态代理)

前言 前面我们说过 ButterKnife 这个库,这个库实现不仅实现了 View 的绑定,而且还提供了大量的注解如 BindView、OnClick、OnLongClick 等来简化开发过程中事件绑定。而这些功能的实现是通过 APT 也就是注解处理器,在编译期间生成 Java 代码…

GStreamer——教程——基础教程2:GStreamer concepts

基本教程2:GStreamer概念 1,目标 之前的教程展示了如何自动构建管道。现在我们将手动构建一条pipeline:初始化每一个element并将它们连接起来。在此过程中,我们将学习: 什么是GStreamer元素以及如何创建一个。 如何…

redis设计与实现(五)RDB与AOF持久化

RDB持久化 因为Redis是内存数据库,它将自己的数据库状态储存在内存里面,所以如果不想办法将储存在内存中的数据库状态保存到磁盘里面,那么一旦服务器进程退出,服务器中的数据库状态也会消失不见。 为了解决这个问题,…

CC2500和CC1101移植说明

主要通过如何移植、移植注意、关于芯片配置、如何生成导出配置四大步骤来说明CC2500和CC1101移植 首先通过下图1这个宏进行选择 如何移植 要移植的部分在 CC2500_hal.c 和 CC2500_hal.h中, 搜索 "//移植" 就可以定位到 库 所需的依赖, 需要根据 您的环境实现这些…