门控循环单元GRU与长短期记忆网络LSTM

news2025/4/21 8:24:47

门控循环单元与长短期记忆网络

门控隐状态

问题提出:对于一个序列来说不是每个观察值都是同等重要想只记住相关的观察需要:

  • 能关注的机制(更新门)
  • 能遗忘的机制(重置门)

第一个词元的影响至关重要。 我们希望有某些机制能够在一个记忆元里存储重要的早期信息。 如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。

在这里插入图片描述

重置门和更新门

首先介绍重置门(reset gate)和更新门(update gate)。 我们把它们设计成(0,1)区间中的向量, 这样我们就可以进行凸组合。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。

在这里插入图片描述
首先引出重置门与更新门的计算步骤:
R t = σ ( X t W x r + H t − 1 W h r + b r ) Z t = σ ( X t W x z + H t − 1 W h z + b z ) \begin{aligned} \mathbf{R}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x r}+\mathbf{H}_{t-1} \mathbf{W}_{h r}+\mathbf{b}_{r}\right) \\ \mathbf{Z}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x z}+\mathbf{H}_{t-1} \mathbf{W}_{h z}+\mathbf{b}_{z}\right) \end{aligned} RtZt=σ(XtWxr+Ht1Whr+br)=σ(XtWxz+Ht1Whz+bz)

候选隐状态

让我们将重置门Rt 与
H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \mathbf{H}_{t}=\phi\left(\mathbf{X}_{t} \mathbf{W}_{x h}+\mathbf{H}_{t-1} \mathbf{W}_{h h}+\mathbf{b}_{h}\right) . Ht=ϕ(XtWxh+Ht1Whh+bh).
中的常规隐状态更新机制集成, 得到在时间步t的候选隐状态(candidate hidden state)

H ~ t = tanh ⁡ ( X t W x h + ( R t ⊙ H t − 1 ) W h h + b h ) , \tilde{\mathbf{H}}_{t}=\tanh \left(\mathbf{X}_{t} \mathbf{W}_{x h}+\left(\mathbf{R}_{t} \odot \mathbf{H}_{t-1}\right) \mathbf{W}_{h h}+\mathbf{b}_{h}\right), H~t=tanh(XtWxh+(RtHt1)Whh+bh),

我们使用tanh非线性激活函数来确保候选隐状态中的值保持在区间(-1,1)中。

在这里插入图片描述
之后说明候选隐状态的分析:

每当重置门Rt中的项接近1时, 我们恢复了普通的循环神经网络。 对于重置门Rt中所有接近0的项, 候选隐状态是以Xt作为输入的多层感知机的结果。 因此,任何预先存在的隐状态都会被重置为默认值。

注意其中引入的sigmoid函数信息

隐状态

上述的计算结果只是候选隐状态,我们仍然需要结合更新门Zt的效果。 这一步确定新的隐状态Ht。

在多大程度上来自旧的状态Ht-1和 新的候选状态Ht~ 。 更新门Zt仅需要在 Ht-1和Ht~ 之间进行按元素的凸组合就可以实现这个目标。 这就得出了门控循环单元的最终更新公式:

H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ H ~ t . \mathbf{H}_{t}=\mathbf{Z}_{t} \odot \mathbf{H}_{t-1}+\left(1-\mathbf{Z}_{t}\right) \odot \tilde{\mathbf{H}}_{t} . Ht=ZtHt1+(1Zt)H~t.

每当更新门Zt接近1时,模型就倾向只保留旧状态。 此时,来自
的Xt信息基本上被忽略, 从而有效地跳过了依赖。 相反,当
Zt接近0时, 新的隐状态就会接近候选隐状态Ht~

在这里插入图片描述

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

GRU的简单实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
#%%
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )
#%%
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

进行模型的训练

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

在这里插入图片描述

长短期记忆网络

长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题。 解决这一问题的最早方法之一是长短期存储器(long short-term memory,LSTM)

门控记忆元

长短期记忆网络引入了记忆元(memory cell),或简称为单元(cell)。 有些文献认为记忆元是隐状态的一种特殊类型, 它们与隐状态具有相同的形状,其设计目的是用于记录附加的信息。 为了控制记忆元,我们需要许多门。 其中一个门用来从单元中输出条目,我们将其称为输出门(output gate)。 另外一个门用来决定何时将数据读入单元,我们将其称为输入门(input gate)。 我们还需要一种机制来重置单元的内容,由遗忘门(forget gate)来管理, 这种设计的动机与门控循环单元相同,

  • 输出门
  • 输入门
  • 遗忘门

输入门、遗忘门和输出门

在这里插入图片描述
I t = σ ( X t W x i + H t − 1 W h i + b i ) F t = σ ( X t W x f + H t − 1 W h f + b f ) , O t = σ ( X t W x o + H t − 1 W h o + b o ) \begin{aligned} \mathbf{I}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x i}+\mathbf{H}_{t-1} \mathbf{W}_{h i}+\mathbf{b}_{i}\right) \\ \mathbf{F}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x f}+\mathbf{H}_{t-1} \mathbf{W}_{h f}+\mathbf{b}_{f}\right), \\ \mathbf{O}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x o}+\mathbf{H}_{t-1} \mathbf{W}_{h o}+\mathbf{b}_{o}\right) \end{aligned} ItFtOt=σ(XtWxi+Ht1Whi+bi)=σ(XtWxf+Ht1Whf+bf),=σ(XtWxo+Ht1Who+bo)

候选记忆元

由于还没有指定各种门的操作,所以先介绍候选记忆元(candidate memory cell) 。 它的计算与上面描述的三个门的计算类似, 但是使用tanh函数作为激活函数,函数的值范围为(-1,1)下面导出在时间步t处的方程:

C ~ t = tanh ⁡ ( X t W x c + H t − 1 W h c + b c ) \tilde{\mathbf{C}}_{t}=\tanh \left(\mathbf{X}_{t} \mathbf{W}_{x c}+\mathbf{H}_{t-1} \mathbf{W}_{h c}+\mathbf{b}_{c}\right) C~t=tanh(XtWxc+Ht1Whc+bc)

在这里插入图片描述

记忆元

在门控循环单元中,有一种机制来控制输入和遗忘(或跳过)。类似地,在长短期记忆网络中,也有两个门用于这样的目的:输入门It控制采用多少来自Ct的新数据,而遗忘门Ft控制保留多少过去的记忆元Ct-1∈ Rn×h的内容。使用按元素乘法,得出

C t = F t ⊙ C t − 1 + I t ⊙ C ~ t . \mathbf{C}_{t}=\mathbf{F}_{t} \odot \mathbf{C}_{t-1}+\mathbf{I}_{t} \odot \tilde{\mathbf{C}}_{t} . Ct=FtCt1+ItC~t.

在这里插入图片描述
如果遗忘门始终为1且输入门始终为0,则过去的记忆元Ct-1将随时间被保存并传递到当前时间步。引入这种设计是为了缓解梯度消失问题,并更好地捕获序列中的长距离依赖关系。

隐状态

H t = O t ⊙ tanh ⁡ ( C t ) . \mathbf{H}_{t}=\mathbf{O}_{t} \odot \tanh \left(\mathbf{C}_{t}\right) . Ht=Ottanh(Ct).

最后将输出门中的信息与记忆元中经过激活函数得到的信息进行运算就可以得到最后输出的隐状态。

只要输出门接近1,我们就能够有效地将所有记忆信息传递给预测部分, 而对于输出门接近0,我们只保留记忆元内的所有信息,而不需要更新隐状态。在这里插入图片描述

LSTM简单实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

初始化模型的参数

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

搭建网络结构

def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))

实际模型的定义与我们前面讨论的一样: 提供三个门和一个额外的记忆元。 请注意,只有隐状态才会传递到输出层, 而记忆元不直接参与输出计算。

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
     W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * torch.tanh(C)
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)

训练预测得到最后的结果:

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                            init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1824436.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入理解Java多线程:解密程序设计的核心概念

咦咦咦,各位小可爱,我是你们的好伙伴 bug菌,今天又来给大家手把手教学Java SE系列知识点啦,赶紧出来哇,别躲起来啊,听我讲干货记得点点赞,赞多了我就更有动力讲得更欢哦!所以呀&…

基于SSM+Jsp的在线教育资源管理系统

开发语言:Java框架:ssm技术:JSPJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包…

phpStudy里面的MySQL启动不了

C:\Users\Administrator>netstat -an | find "3306" TCP 0.0.0.0:3306 0.0.0.0:0 LISTENING TCP 0.0.0.0:33060 0.0.0.0:0 LISTENING TCP [::]:3306 [::]:0 LISTENING TCP [::]:33060 [::]:0 LISTENING 从你提供的输出结果可以看到,端口3306和33060已经…

9.1 图片的分割处理(c++)

本文的图片处理分为图片分割、图像的亚像素坐标处理。亚像素处理的原理可以看论文一种基于多项式插值改进的亚像素细分算法,该论文的详解及c的代码实现可以看博文基于多项式插值的亚像素边缘定位算法_基于多项式插值的亚像素算法-CSDN博客。下面的内容很多来自以上博…

Sylar C++高性能服务器学习记录22 【ByteArray模块-代码分析篇】

早在19年5月就在某站上看到sylar的视频了,一直认为这是一个非常不错的视频。 由于本人一直是自学编程,基础不扎实,也没有任何人的督促,没能坚持下去。 每每想起倍感惋惜,遂提笔再续前缘。 为了能更好的看懂sylar&…

LLMs的基本组成:向量、Tokens和嵌入

编者按:随着人工智能技术的不断发展,大模型(语言、视觉,或多模态模型)已成为当今AI应用的核心组成部分。这些模型具有处理和理解自然语言等模态输入的能力,推动了诸如聊天机器人、智能助手、自动文本生成等…

好像也没那么失望!SD3玩起来,Stable Diffusion 3工作流商业及广告设计(附安装包)

今天基于SD3 base 工作流来尝试进行下广告设计,这要是一配上设计文案,视觉感就出来了。下面来看看一些效果展示~ SD3 Medium模型及ComfyUI工作流下载地址:文末领取! 1.清凉夏日——西瓜音乐会 提示词: a guitar wi…

数字孪生火电厂:传统能源的数字化转型

通过图扑自主研发的产品 HT for Web ,采用可视化与数字孪生技术,打造多样化设计风格和业务视角下的火电厂数字孪生方案。为智慧电厂综合“一张图”管理提供了上层展示技术支撑,助力企业增强对火电厂的信息化和数字化管理水平。

11.docker镜像分层dockerfile优化

docker镜像的分层(kvm 链接克隆,写时复制的特性) 镜像分层的好处:复用,节省磁盘空间,相同的内容只需加载一份到内存。 修改dockerfile之后,再次构建速度快 分层:就是在原有的基础镜像上新增了服…

Netflix 机器学习科学家的提示词优化经验分享

编者按: 如何充分发挥大模型的潜能,用好大模型,关键在于如何优化向它们发送的提示词(prompt),是为提示词工程(prompt engineering)。 本文Netflix 机器学习科学家Cameron R. Wolfe的…

抖音视频素材在哪找无版权?免版权可以剪辑视频素材网站分享

在抖音视频制作中,素材的选择至关重要。今天,我就为大家推荐几个宝藏网站,帮你找到既好用又无版权纠纷的视频素材。无论你是新手还是老手,这些网站都能满足你的需求。 蛙学府 首先推荐的是蛙学府。这个网站提供丰富的视频素材&am…

STM32硬件接口I2C应用(基于HMC5883L)

目录 概述 1 STM32Cube控制配置I2C 1.1 I2C参数配置 1.2 使用STM32Cube产生工程 2 HAL库函数介绍 2.1 初始化函数 2.2 写数据函数 2.3 读数据函数 3 认识HMC5883L 3.1 HMC5883L功能介绍 3.2 HMC5883L的寄存器 4 HMC5883L驱动程序实现 4.1 驱动函数实现 4.2 完整驱…

xgo 原理探索

Go 单测 mock 方案 Mock 方法原理依赖优点缺点接口 Mock为依赖项定义接口,并提供接口的 Mock 实现。需要定义接口和 Mock 实现。灵活,遵循 Go 的类型系统;易于替换实现。需要更多的样板代码来定义接口和 Mock 实现。Monkey Patching&#xf…

AIGC绘画设计—揭秘Midjourney关键词魔法:让你的AI绘画瞬间起飞

在这个数字化飞速发展的时代,AI技术正以前所未有的速度改变着我们的生活和创作方式。在艺术创作领域,Midjourney作为一款强大的AI绘画工具,正逐渐受到越来越多创作者和爱好者的青睐。今天,我就来为大家揭秘Midjourney背后的关键词…

11.3 Go 标准库的使用技巧

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

Kafka消息能正常发送,但是无法消费问题排查

这里是小奏,觉得文章不错可以关注公众号小奏技术 kafka version kafka_2.13-3.5.0 背景 线上的kafka集群要进行扩容,原先的2broker,扩容之后变成了新增3个broker,然后下掉了原先老的broker。 新集群看着没问题,但是出现了一个…

Java面向对象-抽象类和抽象方法

Java面向对象-抽象类和抽象方法 1、代码案例展示2、抽象类和抽象方法的关系: 1、代码案例展示 1、在一个类中会有一类方法,无需重写,直接使用 2、在一个类中会有一类方法,会对这个方法进行重写 3、一个方法的方法体去掉&#xff…

蚓链数字化营销教你寻找快准直达市场路径小绝招

在当今数字化的商业世界中,蚓链数字化营销成为了企业开拓市场、实现增长的有力工具。它犹如一盏明灯,为您照亮寻找快速直达市场路径的方向。 绝招一:深入的市场调研。利用蚓链数字化营销的大数据分析能力,全面了解目标市场的规模、…

Permute 3 mac:一键转换,格式无忧

Permute 3是一款强大而灵活的多媒体格式转换工具,它以其高效、易用和广泛兼容的特性,成为了众多用户处理媒体文件的得力助手。 Permute 3 Mac版获取 首先,Permute 3支持广泛的媒体格式,无论是视频、音频还是图片,都能…

Python酷库之旅-比翼双飞情侣库(08)

目录 一、xlrd库的由来 二、xlrd库优缺点 1、优点 1-1、支持多种Excel文件格式 1-2、高效性 1-3、开源性 1-4、简单易用 1-5、良好的兼容性 2、缺点 2-1、对.xlsx格式支持有限 2-2、功能相对单一 2-3、更新和维护频率低 2-4、依赖外部资源 三、xlrd库的版本说明 …