自然语言处理:第三十五章Embedding 测评榜单MTEB

news2025/2/26 1:02:26

文章链接: [2210.07316] MTEB: Massive Text Embedding Benchmark (arxiv.org)

项目地址: mteb:MTEB: Massive Text Embedding Benchmark - GitCode

github地址: FlagEmbedding/C_MTEB at master · FlagOpen/FlagEmbedding (github.com)

Hugging Face Leadboard: MTEB Leaderboard - a Hugging Face Space by mteb



NLP的应用中,有一个最关键的步骤就是将文字/其他多模态的模型转换成词嵌入/向量化,而对应的这个模型便称之为Embedding模型。那么在这么多embedding模型里,如何评价好坏呢?本文就会介绍,MTEB(Massive Text Embedding Benchmark)是目前评测文本向量很重要的一个参考,其榜单也是各大文本向量模型用来展示与其他向量模型强弱的一个竞技台。C-MTEB则是专门针对中文文本向量的评测基准。本文介绍了 Massive Text Embedding Benchmark (MTEB),这是一个大规模的文本嵌入基准测试,旨在全面评估文本嵌入方法的性能。MTEB 覆盖了 8 种嵌入任务,包含 58 个数据集和 112 种语言。通过对 33 种模型的基准测试,MTEB 建立了迄今为止最全面的文本嵌入基准。研究发现,没有单一的文本嵌入方法能够在所有任务上都占据优势,这表明该领域尚未就通用文本嵌入方法达成共识,并且尚未将其扩展到足以在所有嵌入任务上提供最先进的结果。




MTEB

背景

随着人工智能和自然语言处理技术的飞速发展,文本嵌入技术已成为推动这些领域进步的重要工具。文本嵌入是将文本转换为密集向量表示的过程,这些向量能够捕捉文本中的语义信息,并使得文本之间的相似性和差异性可以通过向量之间的距离来度量。这种技术已被广泛应用于各种NLP任务中,如文本分类、聚类、搜索、问答等。

然而,文本嵌入模型的评估一直是一个挑战。传统的评估方法通常基于有限的数据集和单一的任务,这无法全面反映模型在真实世界应用中的泛化能力。此外,随着新的文本嵌入模型不断涌现,如何公平地比较不同模型之间的性能也变得越来越困难。

为了解决这些问题,研究人员提出了各种基准测试,以更全面地评估文本嵌入技术的性能。然而,这些基准测试往往存在局限性,例如涵盖的任务和数据集数量有限,或者仅关注于特定的应用场景。因此,需要一个更加全面、更加广泛的基准测试来评估文本嵌入技术的性能。




任务

MTEB 包含以下 8 种任务类型:

  1. Bitext Mining :寻找两种语言句子集之间的最佳匹配。输入是来自两种不同语言的两个句子集,对于来自第一个句子集的句子,找到在第二个子集中最匹配的句子。模型将句子编码成向量后用余弦相似度来寻找最相似的句子对。F1是主要的评估指标、Accuracy、precision、recall也一并计算了。
  2. Classification :使用嵌入模型训练逻辑回归分类器。训练集和测试集通过给定模型编码,测试集向量被用来训练一个LR分类器(最多100次迭代),然后使用测试集来打分,主要评估指标是accuracy with average precision,同时包括F1。
  3. Clustering :将句子或段落分组为有意义的簇。给定句子集或段落集,将其分组为有意义的簇。在编码后的文档上训练一个 mini-batch k-means 模型(batch size为32, k是不同标签的个数),然后使用v-meature为模型打分。
  4. Pair Classification :为一对文本输入分配标签,通常是二元变量,表示重复或释义对。输入是一对带标签的文本,两个文本被编码后计算多种距离:cosine similarity, dot product, euclidean distance, manhattan distance。接着使用最佳阈值来计算accuracy, average precision, f1, precision, recall。基于余弦相似度的平均精度是主要指标。
  5. Reranking :根据与查询的相关性对结果进行重新排序。输入是一个查询语句以及一个包含相关和不相关文本的列表。模型编码文本后比较与查询语句的余弦相似性。每个查询语句的分数都被计算并平均所有查询语句的分数。指标有平均 M R R @ k MRR@kMRR@k和MAP(主要指标)
  6. Retrieval :找到相关文档。每个数据集包括一个语料集,查询语句及其与语料中的相关文档的映射。模型编码所有查询语句和语料文档之后计算余弦相似度,对每一个查询语句的结果排序后计算k的多个取值所对应的nDCG@k, MRR@k, MAP@k, precision@k , recall@k。使用BEIR相同的设置,nDCG@10是主要指标。
  7. Semantic Textual Similarity (STS) :确定句子对的相似性。给定句子对计算它们的相似度,标签是连续得分(越大相似度越高)。模型编码句子后计算使用不同的距离指标计算它们的相似性,计算好的距离与标签相似度基准比较Pearson和Spearman相关性。主要指标是基于余弦相似度的Spearma
  8. Summarization :评估机器生成的摘要。包括一个手写摘要和机器生成摘要数据集,目标是给机器生成摘要打分。模型编码所有摘要,然后对于每一个机器生成摘要向量,计算其与所有手写摘要向量的距离,将相似度最大的分数作为单个机器生成摘要的分数,接下来与基准比较计算Pearson和Spearman相关性。主要指标是基于余弦相似度的Spearman相关性。


在 MTEB 上评估了超过 30 种模型,包括开源模型和通过 API 访问的模型,如 OpenAI Embeddings 端点。结果显示,不同的模型在不同的任务上表现各异,没有单一的最佳解决方案。例如,SimCSE 在 STS 上表现强劲,但在聚类和检索任务上表现不佳

在这里插入图片描述



MTEB中的数据集可以归为三类:

  • Sentence to sentence(S2S)
  • Paragraph to paragraph (P2P)
  • Sentence to paragraph (S2P)

MTEB基于如下需求构建:

  • 多样性Diversity,涵盖不同的任务、不同的语言、句子级别和篇章级别的数据集
  • 简单易用Simpilicity, 提供一个API可以应用于不同的模型
  • 可扩展性Extensibility,新数据集很容易加入到基准中
  • 可复现性Reproducibility,给数据集和软件添加版本使得很容易复现评测结果



C-MTEB

C-MTEB是为了评估中文文本向量,共收集了如上图所示的35个公共数据集,一共分为6类的评估任务:

  • retrieval,包括查询语句和语料库,对于每个查询,从语料库中查询最相似的top-k个文档,使用BEIR相同的设置,nDCG@10是主要指标。
  • re-ranking,包括查询语句和候选文档集(一个正样本和N个负样本),基于向量相似性来重排序,MAP是主要指标。
  • STS (semantic textual similarity),基于向量相似度比较两个句子的相关性,计算了Spearman 相关性并作为主要指标。
  • classification,与MTEB一样。
  • pair classification,比较一对句子的相似性,使用平均精度作为主要指标。
  • clustering,评测方法与MTEB一样。向量在每个任务上的表现是对应任务下所有数据集的平均指标来决定,而向量整体性能是所有数据集的平均值决定的。

在这里插入图片描述



使用方法代码

MTEB 的软件是开源的,允许通过添加不到 10 行代码来评估任何嵌入模型。下面简单的说一下使用方法:

安装

pip install mteb

使用

  • 使用python脚本(参考 scripts/run_mteb_english.py 和 mteb/mtebscripts):
  • import mteb
    from sentence_transformers import SentenceTransformer
    
    # 定义 sentence-transformers 模型名
    model_name = "average_word_embeddings_komninos"
    # 或直接从 Hugging Face 加载:
    # model_name = "sentence-transformers/all-MiniLM-L6-v2"
    
    model = SentenceTransformer(model_name)
    tasks = mteb.get_tasks(tasks=["Banking77Classification"])
    evaluation = mteb.MTEB(tasks=tasks)
    results = evaluation.run(model, output_folder=f"results/{model_name}")
    
  • 使用CLI命令行
mteb --available_tasks

mteb -m sentence-transformers/all-MiniLM-L6-v2 \
    -t Banking77Classification  \
    --verbosity 3

# 如果没有指定,默认将结果保存在 results/{model_name} 文件夹中
  • 并行使用多个 GPU 可以通过自定义编码函数实现,例如 此处 或 此处。
  • 其他高级用法可以参考官网mteb:MTEB: Massive Text Embedding Benchmark - GitCode


Leadboard

截至到本榜单更新时间: 24/06/05,MTEB Leaderboard - a Hugging Face Space by mteb 中文top10如下。

在这里插入图片描述



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1823841.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot的城市垃圾分类管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于springboot的城市垃圾分类管理系统,…

家用RJ45水晶头可以用在工业互联网中?

工业互联网作为智能制造的核心组成部分,已经在工业领域快速发展。在建立连接不同设备和系统的复杂网络中,网络设备和连接器的选择变得至关重要。其中,普遍使用的RJ45水晶头和网线在家庭和小型商业网络中被广泛采用,但是否适用于工…

PostgreSQL基础(十四):PostgreSQL的数据迁移

文章目录 PostgreSQL的数据迁移 PostgreSQL的数据迁移 PostgreSQL做数据迁移的插件非常多,可以从MySQL迁移到PostgreSQL也可以基于其他数据源迁移到PostgreSQL。 这种迁移的插件很多,这里只说一个,pgloader(非常方便&#xff0…

国内算力真的紧缺么?

苹果WWDC证实了一点:AI推理算力将长期处于“云端为主”的状态,这个“长期”至少是三到五年。对,苹果和OpenAI搞了一场大合作,打算把下一代iOS系统和ChatGPT混在一起。 这意味着未来三到五年,AI的推理大部分还得靠云端…

linux驱动学习(九)之中断

一、中断的实现 对于中断的请求&#xff0c;在linux内核中&#xff0c;有一套标准的接口函数&#xff0c;可以实现中断的响应和处理。 #include <linux/interrupt.h>//1 申请中断 static inline int __must_check request_irq(unsigned int irq, irq_handler_t handler…

vue自定义一个回到顶部组件

1.首先创建一个backTop.vue页面&#xff1a; 页面有两个按钮&#xff0c;一个回到顶部按钮&#xff0c;一个刷新按钮(showRefresh:false将刷新按钮隐藏)&#xff0c;实现效果如下&#xff1a; 代码解析&#xff1a; domName:需要监听滚动的dom类名&#xff0c;不传默认监听bod…

windows下open webui+ollama+sd webui

原文&#xff1a;https://wangguo.site/Blog/2024/Q2/2024-06-14/ 说明&#xff1a;安装使用环境是在Windows下 1、给ollama一个好看的交互界面&#xff08;open webui&#xff09; 1.1、ollama安装 安装&#xff1a;在ollama官网下载windows版本进行安装 模型列表&#xff1…

ChatGPT等大模型可以代替搜索引擎吗?

在知乎看到一个问题&#xff0c;回答了一下&#xff0c;分享到这里。 把ChatGPT当作搜索引擎可靠性差点&#xff0c;但是可行。 代替搜索引擎 1、写代码 我们可以让GPT写一段算法代码或者使用某个语言API的示例&#xff0c;然后只需要把这段代码粘贴到IDE中&#xff0c;简单…

Linux编辑器 vim使用 (解决普通用户无法进行sudo提权问题)

文章目录 一.vim是什么命令模式底行模式 二.关于vim暂停问题三.注释批量化注释批量化去注释 四.解决普通用户无法进行sudo提权问题五.vim的配置 一.vim是什么 用过VS的都知道&#xff0c;拥有着编辑器编译器调试.编写C&#xff0c;C&#xff0c;python等的功能。就是集成 Linu…

Git 基础操作(一)

Git 基础操作 配置Git 安装完Git后&#xff0c;首先要做的事情是设置你的 用户名 和 e-mail 地址。这样在你向仓库提交代码的时候&#xff0c;就知道是谁提交的&#xff0c;以及提交人的联系方式。 配置用户名和邮箱 使用git config [--global] user.name "你的名字&qu…

网络爬虫概述

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 网络爬虫&#xff08;又被称为网络蜘蛛、网络机器人&#xff0c;在某社区中经常被称为网页追逐者&#xff09;&#xff0c;可以按照指定的规则&#…

神经网络-万能近似定理的探索

神经网络-万能近似定理的探索 对于这个实验博主想说&#xff0c;其实真的很有必要去好好做一下&#xff0c;很重要的一个实验。 1.理论介绍 万能近似定理: ⼀个前馈神经⽹络如果具有线性层和⾄少⼀层具有 “挤压” 性质的激活函数&#xff08;如 sigmoid 等&#xff09;&…

基于Matlab的细胞计数图像处理系统(GUI界面有报告) 【含Matlab源码 MX_003期】

简介&#xff1a; 本文旨在解决生物血细胞数目统计的挑战&#xff0c;提出了基于图像处理的综合方案。通过MATLAB平台&#xff0c;我们设计并实现了一套完整的细胞图像处理与分析流程。在预处理阶段&#xff0c;采用图像增强和阈值分割等方法&#xff0c;有效地提高了细胞图像的…

Swift开发——输出格式化字符

Swift语言是开发iOS和macOS等Apple计算机和移动设备系统应用程序的官方语言。Swift语言是一种类型安全的语言,语法优美自然,其程序从main.swift文件开始执行,程序代码按先后顺序执行,同一个工程的程序文件中的类和函数直接被main.swift文件调用,除了main.swift文件外,工程…

【数据挖掘-思考】分类和聚类

将芝麻和花生分开&#xff0c;是一个分类问题还是聚类问题? 显而易见的&#xff0c;在日常生活中&#xff0c;这是一个分类问题&#xff0c;在数据挖掘领域中&#xff0c;是否也是这样呢&#xff1f; 通义千问的回答&#xff1a; 在数据挖掘中&#xff0c;将芝麻和花生分开可以…

【C语言】14. qsort 的底层与模拟实现

一、回调函数 回调函数就是⼀个通过函数指针调用的函数。 把函数的指针&#xff08;地址&#xff09;作为参数传递给另⼀个函数&#xff0c;当这个指针被用来调用其所指向的函数时&#xff0c;被调用的函数就是回调函数。回调函数不是由该函数的实现方直接调用&#xff0c;而是…

思维+暴力,CF992D - Nastya and a Game

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 992D - Nastya and a Game 二、解题报告 1、思路分析 这个题题目很吓人 因为看起来前缀和根本存不下&#xff0c;似乎没法算 这也提示我们似乎只需在小范围内枚举求解即可 题目的P / K SUM也保证了我们…

SQL中的UPDATE语句:别让你的数据“离家出走”

sql的update操作正式环境用的很少&#xff0c;但是在测试环境还是用的挺多的。 想象一下&#xff0c;你正在管理一个学校的数据库&#xff0c;其中有一个students表&#xff0c;记录着每个学生的信息。有一天&#xff0c;你接到通知说某个学生的年龄或成绩需要更新。这时&…

54.Python-web框架-Django-免费模板django-datta-able

1.Datta Able Django介绍 Detta Able Djiango是什么 Datta Able Django 是一个由AppSeed提供的开源Django管理面板&#xff0c;基于现代设计&#xff0c;为开发者提供了一流的功能和优雅的界面。它源自CodedThemes的高风格化Bootstrap 4模板——Datta Able Bootstrap Lite&…

云电脑有多好用?适合哪些人使用?

云电脑作为一种新型的计算模式&#xff0c;其应用场景广泛且多样&#xff0c;适合各类人群使用。云电脑适合什么人群使用&#xff1f;云电脑有哪些应用场景&#xff1f;有什么好的云电脑推荐&#xff1f;以下本文将详细探讨云电脑的主要应用场景及其适用人群的相关内容&#xf…