1、链表
1.1 链表的概念及结构
链表在逻辑层面上是连续的,在物理层面上不一定是连续的
链表结构可分为,单向或双向、带头或不带头、循环或非循环,组合共计8种
重点:无头单向非循环链表、无头双向链表
1.2 模拟实现无头单向非循环链表
一个链表由若干节点组成,结合 内部类 知识,可将节点类定义在链表类中,成为内部类
public class MySingleLinkedList {
static class ListNode {//该内部类中定义的是节点的属性
public int val;
public ListNode next;
public ListNode(int val) {
this.val = val;
}
}
public ListNode head;//链表的头节点,定义在MySingleLinkedList类中
}
下面以穷举的方式创建链表方便理解(真正创建链表并非如此)
//MySingleLinkedList类
//该方法创建一个链表,头节点为node1,当该方法结束后,变量node1...都会销毁,只剩下头节点为head的链表
public void createdList(){
ListNode node1 = new ListNode(1);
ListNode node2 = new ListNode(2);
ListNode node3 = new ListNode(3);
ListNode node4 = new ListNode(4);
ListNode node5 = new ListNode(5);
node1.next = node2;
node2.next = node3;
node3.next = node4;
node4.next = node5;
this.head = node1;
}
打印链表
//MySingleLinkedList 类
public void display() {
ListNode cur = head; //若直接使用head进行遍历打印,将只能打印一次,再次调用该函数,头节点就不在原来的位置了
while(cur != null) { //注意!此处若写成 cur.next != null 则不会打印最后一个节点
System.out.print(cur.val + " ");
cur = cur.next;
}
}
求链表长度:
//遍历即可
public int size() {
ListNode cur = head;
int count = 0;
while(cur != null) {
cur = cur.next;
count++;
}
return count;
}
头插法:
public void addFirst(int data) {
ListNode newNode = new ListNode(data);
newNode.next = head;
head = newNode;
}
尾插法:
public void addLast(int data) {
ListNode newNode = new ListNode(data);
//不要忘记:判空!
if(head == null) {
head = newNode;
return;
}
ListNode cur = head;
while(cur.next != null) { //此处若写成 cur.next != null 则不会打印最后一个节点
cur = cur.next;
}
cur.next = newNode;
}
在index位置插入
// IndexNotLegalException 异常类
public class IndexNotLegalException extends RuntimeException{
public IndexNotLegalException() {
}
public IndexNotLegalException(String msg) {
super(msg);
}
}
// MySingleLinkedList 类
public void addIndex(int index, int data) {
//1、判断index合法性
try{
checkIndex(index);
}catch(IndexNotLegalException e) {
e.printStackTrace();
}
//2、index == 0 || index == size()
if(index == 0) {
addFirst(data);
return;
}
if(index == size()) {
addLast(data);
return;
}
//3、找到index的前一个位置
ListNode cur = findIndexSubOne(index);
//4、进行连接
ListNode node = new ListNode(data);
node.next = cur.next;
cur.next = node;
}
private void checkIndex(int index) throws IndexNotLegalException{
if(index < 0 || index > size()) {
throw new IndexNotLegalException("index不合法!");
}
}
private ListNode findIndexSubOne(int index) {
int count = 0;
ListNode cur = head;
while(count < index-1) {
cur = cur.next;
count++;
}
return cur;
}
查找关键字key是否包含在链表中
public boolean contains(int key) {
ListNode cur = head;
while(cur != null) {
if(cur.val == key) {
return true;
}
cur = cur.next;
}
return false;
}
删除第一次出现关键字key的节点
public void remove(int key) {
//判空
if(head == null) {
return;
}
//若头节点为key
while(head.val == key) {
head = head.next;
return;
}
ListNode cur = head;
//遍历找到值为key的节点
while(cur.next != null) {
if(cur.next.val == key) {
cur.next = cur.next.next;
return;
}
cur = cur.next;
}
System.out.println("没有找到要删除的数字!");
}
删除所有值为key的节点
public void removeAllKey(int key) {
//判空
if (this.head == null) {
return;
}
//快慢指针
ListNode prev = head;
ListNode cur = head.next;
while(cur != null) {
if(cur.val == key) {
prev.next = cur.next;
}else {
prev = cur;
}
cur = cur.next;
}
//处理头节点,当上述操作完成后,只剩下头节点没有判断
//该方法优于一上来就判断头节点
if(head.val == key) {
head =head.next;
}
}
清空链表
public void clear() {
ListNode cur = head;
while(cur != null) {
ListNode curN = cur.next;
cur.next = null;
cur = curN;
}
head = null;
}
1.3 模拟实现无头双向非循环链表
public class MyLinkedList {
static class ListNode {
public int data;
public ListNode prev;//前驱节点
public ListNode next;//后继节点
public ListNode(int data){
this.data = data;
}
}
public ListNode head;//头节点
public ListNode last;//尾节点
//得到单链表的长度
public int size(){
int count = 0;
ListNode cur = head;
while(cur != null) {
count++;
cur = cur.next;
}
return count;
}
public void display(){
ListNode cur = head;
while(cur != null) {
System.out.print(cur.data + " ");
cur = cur.next;
}
System.out.println();
}
//查找是否包含关键字key是否在单链表当中
public boolean contains(int key){
ListNode cur = head;
while(cur != null) {
if(cur.data == key) {
return true;
}
cur = cur.next;
}
return false;
}
//头插法
public void addFirst(int data){
ListNode node = new ListNode(data);
if(head == null) {
head = last = node;
}else {
head.prev = node;
node.next = head;
head = node;
}
}
//尾插法
public void addLast(int data){
ListNode node = new ListNode(data);
if(head == null) {
head = last = node;
}else {
last.next = node;
node.prev = last;
last = node;
}
}
//任意位置插入,第一个数据节点为0号下标
public void addIndex(int index,int data){
try{
checkIndex(index);
}catch(IndexIllegalException e) {
e.printStackTrace();
}
if(index == 0) {
addFirst(data);
return;
}
if(index == size()) {
addLast(data);
return;
}
ListNode node = new ListNode(data);
ListNode cur = findIndex(index);
node.next = cur;
node.prev = cur.prev;
cur.prev.next = node;
cur.prev = node;
}
private ListNode findIndex(int index) {
ListNode cur = head;
while(index != 0) {
cur = cur.next;
index--;
}
return cur;
}
private void checkIndex(int index) throws IndexIllegalException{
if(index < 0 || index > size()) {
throw new IndexIllegalException("双向链表index不合法!");
}
}
//删除第一次出现关键字为key的节点
public void remove(int key){
ListNode cur = head;
while(cur != null) {
if(cur.data == key) {
if(cur == head) {
head = head.next;
if(head != null) {
head.prev = null;
}else {
last = null;
}
}else if(cur == last) {
cur.prev.next = null;
last = cur.prev;
}else {
cur.prev.next = cur.next;
cur.next.prev = cur.prev;
}
return;
}
cur = cur.next;
}
}
//删除所有值为key的节点
public void removeAllKey(int key){
ListNode cur = head;
while(cur != null) {
if(cur.data == key) {
if(cur == head) {
head = head.next;
if(head != null) {
head.prev = null;
}else {
last = null;
}
}else if(cur == last) {
cur.prev.next = null;
last = cur.prev;
}else {
cur.prev.next = cur.next;
cur.next.prev = cur.prev;
}
}
cur = cur.next;
}
}
public void clear(){
ListNode cur = head.next;
while(cur != null) {
cur = head.next;
head.prev = null;
head.next = null;
head = cur;
}
head = last = null;
}
}
链表遍历方式:
public static void main(String[] args) {
LinkedList<Integer> list = new LinkedList<>();
list.add(1);
list.add(2);
list.add(3);
//直接sout打印
System.out.println(list);
System.out.println("======");
//foreatch循环打印
for(Integer x : list) {
System.out.print(x + " ");
}
System.out.println();
System.out.println("======");
//for循环打印
for (int i = 0; i < list.size(); i++) {
System.out.print(list.get(i) + " ");
}
System.out.println();
System.out.println("======");
//Iterator打印
Iterator<Integer> it = list.iterator();
while(it.hasNext()) {
System.out.print(it.next() + " ");
}
System.out.println();
System.out.println("======");
//ListIterator可以倒着打印
ListIterator<Integer> it3 = list.listIterator(list.size());
while(it3.hasPrevious()) {
System.out.print(it3.previous() + " ");
}
}
运行结果:
2、ArrayList 和 LinkedList 的区别
不同点 | ArrayList | LinkedList |
存储空间上 | 逻辑&物理均连续 | 逻辑上连续,物理上不一定连续 |
随机访问 | 支持,时间复杂度为O(1) | 不支持,时间复杂度为O(N) |
头插 | 需要搬运元素,O(N) | 只需修改引用的指向,O(1) |
插入 | 空间不够时需要扩容 | 没有容量概念 |
应用场景 | 元素高效存储+频繁访问 | 频繁在任意位置插入删除操作 |