鸿蒙轻内核A核源码分析系列七 进程管理 (1)

news2025/1/9 5:53:30

本文开始继续分析OpenHarmony LiteOS-A内核的源代码,接下来会分析进程和任务管理模块。本文中所涉及的源码,以OpenHarmony LiteOS-A内核为例,均可以在开源站点 https://gitee.com/openharmony/kernel_liteos_a 获取。如果涉及开发板,则默认以hispark_taurus为例。

本文先熟悉下进程管理的概念、运行机制和编程接口。

1、LiteOS-A内核进程基本概念

进程是系统资源管理的最小单元。OpenHarmony LiteOS-A内核提供的进程模块主要用于实现用户态进程的隔离,内核态被视为一个进程空间,不存在其它进程(KIdle除外,KIdle进程是系统提供的空闲进程,和KProcess共享一个进程空间)。

1.1 LiteOS-A内核进程特征

LiteOS-A内核进程有如下特征:

  • 进程模块主要为用户提供多个进程,实现了进程之间的切换和通信,帮助用户管理业务程序流程。

  • 进程采用抢占式调度机制,采用高优先级优先+同优先级时间片轮转的调度算法。

  • 进程一共有32个优先级(0-31),用户进程可配置的优先级有22个(10-31),最高优先级为10,最低优先级为31。

  • 高优先级的进程可抢占低优先级进程,低优先级进程必须在高优先级进程阻塞或结束后才能得到调度。

  • 每一个用户态进程均拥有自己独立的进程空间,相互之间不可见,实现进程间隔离。

  • 用户态根进程init由内核态创建,其它用户态子进程均由init进程fork而来。

1.2 LiteOS-A内核进程状态

LiteOS-A内核进程状态包含初始化态、就绪态、运行态、阻塞态、僵死态等几种状态。

  • 初始化(Init):进程正在被创建。

  • 就绪(Ready):进程在就绪列表中,等待CPU调度。

  • 运行(Running):进程正在运行。

阻塞(Pending):进程被阻塞挂起。本进程内所有的线程均被阻塞时,进程被阻塞挂起。

  • 僵尸(Zombies):进程运行结束,等待父进程回收其控制块资源。

各个状态迁移示意图如下所示,图片来自openharmony docs文档仓:

进程状态迁移说明如下:

  • 1、Init→Ready: 进程创建或fork时,拿到该进程控制块后进入Init状态,处于进程初始化阶段,当进程初始化完成将进程插入调度队列,此时进程进入就绪状态。

  • 2、Ready→Running: 进程创建后进入就绪态,发生进程切换时,就绪列表中最高优先级的进程被执行,从而进入运行态。若此时该进程中已无其它线程处于就绪态,则进程从就绪列表删除,只处于运行态;若此时该进程中还有其它线程处于就绪态,则该进程依旧在就绪队列,此时进程的就绪态和运行态共存,但对外呈现的进程状态为运行态。

  • 3、Running→Pending: 进程在最后一个线程转为阻塞态时, 进程内所有的线程均处于阻塞态,此时进程同步进入阻塞态,然后发生进程切换。

  • 4、Pending→Ready: 阻塞进程内的任意线程恢复就绪态时,进程被加入到就绪队列,同步转为就绪态。

  • 5、Ready→Pending: 进程内的最后一个就绪态线程转为阻塞态时,进程从就绪列表中删除,进程由就绪态转为阻塞态。

  • 6、Running→Ready: 进程由运行态转为就绪态的情况有以下两种:

    • 6.1 有更高优先级的进程创建或者恢复后,会发生进程调度,此刻就绪列表中最高优先级进程变为运行态,那么原先运行的进程由运行态变为就绪态。
    • 6.2 若进程的调度策略为LOS_SCHED_RR,且存在同一优先级的另一个进程处于就绪态,则该进程的时间片消耗光之后,该进程由运行态转为就绪态,另一个同优先级的进程由就绪态转为运行态。
  • 7、Running→Zombies: 当进程的主线程或所有线程运行结束后,进程由运行态转为僵尸态,等待父进程回收资源。

2、LiteOS-A内核进程运行机制

OpenHarmony 提供的进程模块主要用于实现用户态进程的隔离,支持用户态进程的创建、退出、资源回收、设置/获取调度参数、获取进程ID、设置/获取进程组ID等功能。用户态进程通过fork父进程而来,fork进程时会将父进程的进程虚拟内存空间clone到子进程,子进程实际运行时通过写时复制机制将父进程的内容按需复制到子进程的虚拟内存空间。进程只是资源管理单元,实际运行是由进程内的各个线程完成的,不同进程内的线程相互切换时会进行进程空间的切换。

3、LiteOS-A内核进程模块接口

3.1 LiteOS-A内核进程模块对外接口

进程模块对外接口文件kernel\include\los_process.h定义的接口,如下表所示。

功能分类接口名称描述
进程调度参数控制LOS_GetProcessScheduler获取指定进程的调度策略
LOS_SetProcessScheduler设置指定进程的调度参数,包括优先级和调度策略
LOS_GetProcessPriority获取指定进程的优先级
LOS_SetProcessPriority设置指定进程的优先级
进程操作LOS_Wait等待子进程结束并回收子进程
LOS_Waitid等待子进程结束并回收子进程
LOS_Exit退出进程
LOS_ForkFork进程
进程组LOS_GetProcessGroupID获取指定进程的进程组ID
LOS_GetCurrProcessGroupID获取当前进程的进程组ID
获取进程IDLOS_GetCurrProcessID获取当前进程的进程ID
LOS_GetUsedPIDList获取已用的进程ID列表,输出到进程ID数组
用户及用户组LOS_GetUserID获取当前进程的用户ID
LOS_GetGroupID获取当前进程的用户组ID
LOS_CheckInGroups检查指定用户组ID是否在当前进程的用户组内
系统支持的最大进程数LOS_GetSystemProcessMaximum获取系统支持的最大进程数目
文件描述符表LOS_GetFdTable根据进程ID获取文件描述符表

完整的接口声明如下:

extern INT32 LOS_Fork(UINT32 flags, const CHAR *name, const TSK_ENTRY_FUNC entry, UINT32 stackSize);

extern INT32 LOS_SetProcessPriority(INT32 pid, UINT16 prio);

extern INT32 LOS_GetProcessPriority(INT32 pid);

extern INT32 LOS_GetProcessScheduler(INT32 pid);

extern INT32 LOS_SetProcessScheduler(INT32 pid, UINT16 policy, UINT16 prio);

extern UINT32 LOS_GetCurrProcessID(VOID);

extern INT32 LOS_Wait(INT32 pid, USER INT32 *status, UINT32 options, VOID *rusage);

extern INT32 LOS_Waitid(INT32 pid, USER siginfo_t *info, UINT32 options, VOID *rusage);

extern INT32 LOS_GetCurrProcessGroupID(VOID);

extern INT32 LOS_GetProcessGroupID(UINT32 pid);

extern VOID LOS_Exit(INT32 status);

extern UINT32 LOS_GetSystemProcessMaximum(VOID);

#ifdef LOSCFG_SECURITY_CAPABILITY
extern BOOL LOS_CheckInGroups(UINT32 gid);
#endif
extern INT32 LOS_GetUserID(VOID);
extern INT32 LOS_GetGroupID(VOID);

extern INT32 LOS_GetUsedPIDList(UINT32 *pidList, INT32 pidMaxNum);

#ifdef LOSCFG_FS_VFS
struct fd_table_s *LOS_GetFdTable(UINT32 pid);
#endif

3.2 LiteOS-A内核进程模块结构体

私有头文件kernel\base\include\los_process_pri.h中定义了宏、结构体等。进程组、进程控制块结构体如下。对于进程组,如⑴所示,进程组的编号等于创建该进程组的进程的进程编号。每个进程组维护一个链表挂载本组的非僵尸态进程,还维护一个链表挂载本组的僵尸态进程。所有的进程都通过链表节点groupList挂载到全局进程组链表上,可以方便管理进程组。

进程控制块结构体比较复杂,⑵-⑶维护进程的名称、ID编号、状态、模式、退出状态等等,⑷-⑸维护各种链表,进程组信息,线程数量等。接下来,维护多核时的CPU信息,信号信息,虚拟地址框架,文件,安全能力等。涉及具体代码时,再深入分析这些结构体成员。

    typedef struct {
⑴      UINT32      groupID;         /**< Process group ID is the PID of the process that created the group */
        LOS_DL_LIST processList;     /**< List of processes under this process group */
        LOS_DL_LIST exitProcessList; /**< List of closed processes (zombie processes) under this group */
        LOS_DL_LIST groupList;       /**< Process group list */
    } ProcessGroup;

    typedef struct ProcessCB {
⑵      CHAR                 processName[OS_PCB_NAME_LEN]; /**< Process name */
        UINT32               processID;                    /**< Process ID */
        UINT16               processStatus;                /**< [15:4] Process Status; [3:0] The number of threads currently
                                                                running in the process */
        UINT16               consoleID;                    /**< The console id of task belongs  */
        UINT16               processMode;                  /**< Kernel Mode:0; User Mode:1; */
        UINT32               parentProcessID;              /**< Parent process ID */
⑶      UINT32               exitCode;                     /**< Process exit status */
⑷      LOS_DL_LIST          pendList;                     /**< Block list to which the process belongs */
        LOS_DL_LIST          childrenList;                 /**< Children process list */
        LOS_DL_LIST          exitChildList;                /**< Exit children process list */
        LOS_DL_LIST          siblingList;                  /**< Linkage in parent's children list */
        ProcessGroup         *group;                       /**< Process group to which a process belongs */
        LOS_DL_LIST          subordinateGroupList;         /**< Linkage in group list */
        UINT32               threadGroupID;                /**< Which thread group , is the main thread ID of the process */
        LOS_DL_LIST          threadSiblingList;            /**< List of threads under this process */
        volatile UINT32      threadNumber; /**< Number of threads alive under this process */
        UINT32               threadCount;  /**< Total number of threads created under this process */
⑸      LOS_DL_LIST          waitList;     /**< The process holds the waitLits to support wait/waitpid */
    #ifdef LOSCFG_KERNEL_SMP
        UINT32               timerCpu;     /**< CPU core number of this task is delayed or pended */
    #endif
        UINTPTR              sigHandler;   /**< Signal handler */
        sigset_t             sigShare;     /**< Signal share bit */
    #ifdef LOSCFG_KERNEL_LITEIPC
        ProcIpcInfo          *ipcInfo;      /**< Memory pool for lite ipc */
    #endif
    #ifdef LOSCFG_KERNEL_VM
        LosVmSpace           *vmSpace;     /**< VMM space for processes */
    #endif
    #ifdef LOSCFG_FS_VFS
        struct files_struct  *files;       /**< Files held by the process */
    #endif
        timer_t              timerID;      /**< ITimer */

    #ifdef LOSCFG_SECURITY_CAPABILITY
        User                *user;
        UINT32              capability;
    #endif
    #ifdef LOSCFG_SECURITY_VID
        TimerIdMap           timerIdMap;
    #endif
    #ifdef LOSCFG_DRIVERS_TZDRIVER
        struct Vnode        *execVnode;   /**< Exec bin of the process */
    #endif
        mode_t               umask;
    #ifdef LOSCFG_KERNEL_CPUP
        OsCpupBase           *processCpup; /**< Process cpu usage */
    #endif
        struct rlimit        *resourceLimit;
    } LosProcessCB;

3.3 LiteOS-A内核进程模块内联函数

私有头文件kernel\base\include\los_process_pri.h中还定义了内联函数等。下述几个函数用于判断进程是否未使用,是否未激活状态,是否死亡进程,是否初始化,是否用户态进程等。

STATIC INLINE BOOL OsProcessIsUnused(const LosProcessCB *processCB)
{
    return ((processCB->processStatus & OS_PROCESS_FLAG_UNUSED) != 0);
}

STATIC INLINE BOOL OsProcessIsInactive(const LosProcessCB *processCB)
{
    return ((processCB->processStatus & (OS_PROCESS_FLAG_UNUSED | OS_PROCESS_STATUS_INACTIVE)) != 0);
}

STATIC INLINE BOOL OsProcessIsDead(const LosProcessCB *processCB)
{
    return ((processCB->processStatus & (OS_PROCESS_FLAG_UNUSED | OS_PROCESS_STATUS_ZOMBIES)) != 0);
}

STATIC INLINE BOOL OsProcessIsInit(const LosProcessCB *processCB)
{
    return (processCB->processStatus & OS_PROCESS_STATUS_INIT);
}
STATIC INLINE BOOL OsProcessIsUserMode(const LosProcessCB *processCB)
{
    return (processCB->processMode == OS_USER_MODE);
}

下述几个函数对指定进程设置不同的退出代码,coredump、signal等等。

/*
 * Process exit code
 * 31    15           8           7        0
 * |     | exit code  | core dump | signal |
 */
#define OS_PRO_EXIT_OK 0
STATIC INLINE VOID OsProcessExitCodeCoreDumpSet(LosProcessCB *processCB)
{
    processCB->exitCode |= 0x80U;
}

STATIC INLINE VOID OsProcessExitCodeSignalSet(LosProcessCB *processCB, UINT32 signal)
{
    processCB->exitCode |= signal & 0x7FU;
}

STATIC INLINE VOID OsProcessExitCodeSignalClear(LosProcessCB *processCB)
{
    processCB->exitCode &= (~0x7FU);
}

STATIC INLINE BOOL OsProcessExitCodeSignalIsSet(LosProcessCB *processCB)
{
    return (processCB->exitCode) & 0x7FU;
}

STATIC INLINE VOID OsProcessExitCodeSet(LosProcessCB *processCB, UINT32 code)
{
    processCB->exitCode |= ((code & 0x000000FFU) << 8U) & 0x0000FF00U; /* 8: Move 8 bits to the left, exitCode */
}

小结

本文介绍了进程管理的概念、运行机制和编程接口。

如果大家想更加深入的学习 OpenHarmony 开发的内容,不妨可以参考以下相关学习文档进行学习,助你快速提升自己:

OpenHarmony 开发环境搭建:https://qr18.cn/CgxrRy

《OpenHarmony源码解析》:https://qr18.cn/CgxrRy

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……

系统架构分析:https://qr18.cn/CgxrRy

  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

OpenHarmony 设备开发学习手册:https://qr18.cn/CgxrRy

在这里插入图片描述

OpenHarmony面试题(内含参考答案):https://qr18.cn/CgxrRy

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:https://qr21.cn/FV7h05

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1820625.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

排名前五的 Android 数据恢复软件

正在寻找数据恢复软件来从 Android 设备恢复数据&#xff1f;本指南将为您提供 5 款最佳 Android 数据恢复软件。浏览这些软件&#xff0c;然后选择您喜欢的一款来恢复 Android 数据。 ndroid 设备上的数据丢失可能是一种令人沮丧的经历&#xff0c;无论是由于意外删除、系统崩…

Sm4【国密4加密解密】

当我们开发金融、国企、政府信息系统时&#xff0c;不仅要符合网络安全的等保二级、等保三级&#xff0c;还要求符合国密的安全要求&#xff0c;等保测评已经实行很久了&#xff0c;而国密测评近两年才刚开始。那什么是密码/国密&#xff1f;什么是密评&#xff1f;本文就关于密…

vs2019 c++20规范 STL 库中头文件 <atomic> 源码注释及探讨几个知识点

&#xff08;1 探讨一&#xff09; 模板类 atomic 的继承关系与数据结构如下&#xff1a; (2 探讨二 ) 可见 atomic 的 fetch_xx 函数&#xff0c;返回的都是 atomic 中存储的旧值。测试如下&#xff1a; 谢谢

Weighted A* 改进型(1):XDP

本文的主要内容来自于文献[1]&#xff0c;总的来说这篇文献给我的感觉就是理论证明非常精妙&#xff0c;最后的实际效果也是提升的非常明显。 在Introduction中作者给出了一般Best first search&#xff08;BFS&#xff0c;常用的包括A *&#xff0c;weighted A * &#xff0c…

FPGA - 滤波器 - FIR滤波器设计

一&#xff0c;数字滤波器 滤波器是一种用来减少或消除干扰的器件&#xff0c;其功能是对输入信号进行过滤处理得到所需的信号。滤波器最常见的用法是对特定频率的频点或该频点以外的频率信号进行有效滤除&#xff0c;从而实现消除干扰、获取某特定频率信号的功能。一种更广泛的…

一杯咖啡的艺术 | 如何利用数字孪生技术做出完美的意式浓缩咖啡?

若您对数据分析以及人工智能感兴趣&#xff0c;欢迎与我们一起站在全球视野关注人工智能的发展&#xff0c;与Forrester 、德勤、麦肯锡等全球知名企业共探AI如何加速制造进程&#xff0c; 共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AI for Engineers”…

考研计组chap3存储系统

目录 一、存储器的基本概念 80 1.按照层次结构 2.按照各种分类 &#xff08;41&#xff09;存储介质 &#xff08;2&#xff09;存取方式 &#xff08;3&#xff09;内存是否可更改 &#xff08;4&#xff09;信息的可保存性 &#xff08;5&#xff09;读出之后data是否…

Sui Bridge在测试网上线并推出10万SUI激励计划

是一种为Sui设计的原生桥接协议&#xff0c;专门用于在Sui与其他网络之间桥接资产和数据。今天&#xff0c;Sui Bridge宣布在测试网上线。作为一种原生协议&#xff0c;Sui Bridge能够在Ethereum和Sui之间轻松且安全地转移ETH、wBTC、USDC和USDT&#xff0c;使其成为Sui基础设施…

法考报名必看,99%高过审率证件照片电子版制作技巧

在2024年&#xff0c;法考备战已经如火如荼进行中&#xff0c;作为进入法律行业的第一步&#xff0c;参加法考的重要性不言而喻。而作为报名过程中必不可少的一环&#xff0c;报名照片要求以及证件照制作技巧更是需要我们特别重视的部分。想要在这个过程中顺利通过审核&#xf…

windows 下 docker 入门

这里只是具体过程&#xff0c;有不清楚的欢迎随时讨论 1、安装docker &#xff0c;除了下一步&#xff0c;好像也没有其他操作了 2、安装好docker后&#xff0c;默认是运行在linux 下的&#xff0c;这时我们需要切换到windows 环境下&#xff0c; 操作&#xff1a;在右下角d…

docker拉取镜像失败超时的解决方法,docker配置国内镜像源

更换国内源 创建或修改 /etc/docker/daemon.json 文件 安装docker后一般只有 /etc/docker 这个目录 下面并没有 daemon.json 文件 我们直接创建 &#xff1a; vim /etc/docker/daemon.json {"registry-mirrors" : ["https://registry.docker-cn.com"…

jfif格式怎么转换成jpg?关于将jfif转成jpg的几种方法

jfif格式怎么转换成jpg&#xff1f;JFIF格式是一种常见的图像文件格式&#xff0c;通常用于存储数字照片。然而&#xff0c;在某些情况下&#xff0c;你可能需要将JFIF格式转换为JPG格式。JPG格式是一种广泛使用的图像格式&#xff0c;它被支持和接受的程度比JFIF更高。PNG是一…

长沙干洗服务,打造您的专属衣橱

长沙干洗服务&#xff0c;用心呵护您的每一件衣物&#xff01;致力于为您打造专属的衣橱&#xff0c;让您的每一件衣物都焕发出独特的魅力。 我们深知每一件衣物都承载着您的故事和情感&#xff0c;因此我们会以更加细心的态度对待每一件衣物。无论是您心爱的牛仔裤&#xff0c…

虚拟化 之三 详解 jailhouse(ARM 平台)的构建过程、配置及使用

嵌入式平台下,由于资源的限制,通常不具备通用性的 Linux 发行版,各大主流厂商都会提供自己的 Linux 发行版。这个发行版通常是基于某个 Linux 发行版构建系统来构建的,而不是全部手动构建,目前主流的 Linux 发行版构建系统是 Linux 基金会开发的 Yocto 构建系统。 基本环…

Python基础教程(十六):正则表达式

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

企业多云策略的优势与实施指南

企业在选择云服务提供商时&#xff0c;常见的选项包括亚马逊AWS、微软Azure、谷歌云GCP、阿里云、腾讯云和华为云。为了避免过度依赖单一供应商&#xff0c;许多企业选择采用多云策略&#xff0c;这样可以充分利用不同云服务的优势&#xff0c;同时避免重复工作和其他额外的工作…

16个不为人知的资源网站,强烈建议收藏!

整理了16个不为人知的资源网站&#xff0c;涵盖了课程学习、办公技能、娱乐休闲、小说音乐等多种资源&#xff0c;强烈建议收藏&#xff01; #学习网站 1、中国大学MOOC icourse163.org/ 这是一个汇集了国内顶尖大学免费课程资源的平台&#xff0c;众多985工程院校如北京大…

现代易货模式:重塑物品价值,引领交换新潮流

在日益繁荣的现代社会&#xff0c;物品交换文化正逐渐兴起&#xff0c;一种新型的交易模式——现代易货模式&#xff0c;正在成为市场的新宠。它不仅是对传统“以物易物”模式的现代化演绎&#xff0c;更是对物品价值再认识和交换方式创新的体现。 现代易货模式&#xff0c;简言…

人工智能入门学习教程分享

目录 1.首先安装python&#xff0c;官网地址&#xff1a;Download Python | Python.org&#xff0c;进入网址&#xff0c;点击Windows链接 2.下载完成之后&#xff0c;进行傻瓜式安装&#xff0c;如果不选安装路径&#xff0c;默认会安装到C:\Users\Administrator\AppData\Loc…

找不到xinput1_3.dll文件要怎么修复?有哪些有效修复xinput1_3.dll文件的方法

要解决xinput1_3.dll文件缺失的问题&#xff0c;首先我们需要对这个文件有所了解。理解了这个文件的性质和作用后&#xff0c;才能更科学、有效地解决因其丢失而导致的问题。那么接下来&#xff0c;让我们不浪费时间&#xff0c;直接深入研究如何修复xinput1_3.dll文件的最佳方…