书接上回:Android帧绘制流程深度解析 (一)
5、 dispatchVsync:
在请求Vsync以后,choreographer会等待Vsync的到来,在Vsync信号到来后,会触发dispatchVsync函数,从而调用onVsync方法:
private void dispatchVsync(long timestampNanos, long physicalDisplayId, int frame,
VsyncEventData vsyncEventData) {
onVsync(timestampNanos, physicalDisplayId, frame, vsyncEventData);
}
不过这里需要注意的是,DisplayEventReciever这个类中就有一个onVsync方法,不过这个onVsync方法是空的,所以其实这里是调用的是FrameDisplayEventReciever中的onVsync方法。
FrameDisplayEventReciever类是Choreographer类的一个内部类,其继承自DisplayEventReciever类,所以就有了onVsync方法。其实这里从头到尾调用的都是FrameDisplayEventReciever类的方法,只是因为该类没有dispatchVsync方法,所以才会调用到了DisplayEventReciever类。
6、 onVsync:
public void onVsync(long timestampNanos, long physicalDisplayId, int frame,
VsyncEventData vsyncEventData) {
try {
if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
Trace.traceBegin(Trace.TRACE_TAG_VIEW,
"Choreographer#onVsync "
+ vsyncEventData.preferredFrameTimeline().vsyncId);
}
long now = System.nanoTime();//获取当前时间
if (timestampNanos > now) {//如果该帧的理论绘制时间比现在晚,可直接修改到现在立即绘制
Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f)
+ " ms in the future! Check that graphics HAL is generating vsync "
+ "timestamps using the correct timebase.");
timestampNanos = now;
}
if (mHavePendingVsync) {//还是为了同一时刻只绘制一帧
Log.w(TAG, "Already have a pending vsync event. There should only be "
+ "one at a time.");
} else {
mHavePendingVsync = true;
}
mTimestampNanos = timestampNanos;//确认帧时间
mFrame = frame;//
mLastVsyncEventData = vsyncEventData;
Message msg = Message.obtain(mHandler, this);//(1)生成消息,并发送给mHandler
msg.setAsynchronous(true);//设置为异步消息
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);//发送消息
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
(1)处可见,生成一个消息,其调用的函数是Message中的这个方法:
public static Message obtain(Handler h, Runnable callback) {
Message m = obtain();
m.target = h;
m.callback = callback;
return m;
}
第一个参数是目标handler,第二个参数是callback;这里涉及到消息机制中一个知识点就是在dispatchMessage的时候,会优先查看消息的runnable内容,再到
handler的callback,如果前两个存在的话,就不会去再调用handleMessage流程了。
public void dispatchMessage(@NonNull Message msg) {
if (msg.callback != null) {
handleCallback(msg);//(2)
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
所以上面(1)处的功能就是构建一个发送给mHandler的,callback为当前对象的消息,当前对象就是FrameDisplayEventReceiver这个类的对象,所以再mHandler端读取消息时,会做什么呢? 当然是执行上面(2)处的功能,而且FrameDisplayEventReciever类也实现了Runnable,所以这里就是要去执行FrameDisplayEventReciever类对象的run方法了。
而在消息发送时,具体发送到哪呢?根据mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);这行代码可以看出,调用的是mHandler的发送函数。所以跟到Handler类中的sendMessageAtTime函数:
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
从老方法中可以看出,最后就是将消息入队到队列queue中,而queue就是当前Handler类的对象mHandler的成员变量mQueue。
再回到Choreographer类,mHandler的定义是FrameHandler类的成员变量;而FrameHandler类继承自Handler:
private final class FrameHandler extends Handler {
public FrameHandler(Looper looper) {
super(looper);
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
doFrame(System.nanoTime(), 0, new DisplayEventReceiver.VsyncEventData());
break;
case MSG_DO_SCHEDULE_VSYNC:
doScheduleVsync();
break;
case MSG_DO_SCHEDULE_CALLBACK:
doScheduleCallback(msg.arg1);
break;
}
}
}
看到这里发现FrameHandler不过是重写了handleMessage方法而已,其实对我们上面发送的消息都没影响的。然后还有就是要找到mHandler对应的mQueue是什么。
还记得之前说的消息机制吗?消息队列是在哪初始化的?对了就是Looper的初始化方法中初始化的,而这里的,然后Handler类构建对象时,会将Looper的消息队列赋值给自己。所以能将Handler和Looper关联上。而Looper又是跟当前线程相关联的,所以这里的消息队列就是Choreographer所在的线程的消息队列了。
7、 run:
在接受到Vsync信号触发的帧绘制的消息后,主线程就会执行这个Runnable的run方法,也就是FrameDisplayEventReciever中的run方法;该方法很简单,就一个功能,就是doFrame;
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame, mLastVsyncEventData);
}
不过整个doFrame的逻辑还是相当复杂的。
8、 doFrame:
void doFrame(long frameTimeNanos, int frame,
DisplayEventReceiver.VsyncEventData vsyncEventData) {
final long startNanos;
final long frameIntervalNanos = vsyncEventData.frameInterval;
try {
FrameData frameData = new FrameData(frameTimeNanos, vsyncEventData);
synchronized (mLock) {
if (!mFrameScheduled) {//在scheduleFrameLocked处置为true,会在本函数中置为false,正常情况下在这里是为true的
traceMessage("Frame not scheduled");
return; // no work to do
}
long intendedFrameTimeNanos = frameTimeNanos;//记录传入的帧绘制时间
startNanos = System.nanoTime();//获取当前时间
final long jitterNanos = startNanos - frameTimeNanos;//当前时间减去当前帧应该绘制的时刻,如果出现掉帧,该值会基于掉帧时间越来越大
if (jitterNanos >= frameIntervalNanos) {// frameIntervalNanos是单帧绘制的时间
long lastFrameOffset = 0;//初始化掉帧后的偏移时间量
if (frameIntervalNanos == 0) {
Log.i(TAG, "Vsync data empty due to timeout");
} else {
lastFrameOffset = jitterNanos % frameIntervalNanos;//掉帧时间偏移量
final long skippedFrames = jitterNanos / frameIntervalNanos;//掉帧数量
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {//掉了30帧以上
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main "
+ "thread.");
}
if (DEBUG_JANK) {
Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms "
+ "which is more than the frame interval of "
+ (frameIntervalNanos * 0.000001f) + " ms! "
+ "Skipping " + skippedFrames + " frames and setting frame "
+ "time to " + (lastFrameOffset * 0.000001f)
+ " ms in the past.");
}
}
frameTimeNanos = startNanos - lastFrameOffset;//将帧的理论起始时间进行更新。
frameData.updateFrameData(frameTimeNanos);
}
if (frameTimeNanos < mLastFrameTimeNanos) {//修正完后,此帧的理论开始时间竟然在上一帧的开始时间之前,显然有问题啊
if (DEBUG_JANK) {
Log.d(TAG, "Frame time appears to be going backwards. May be due to a "
+ "previously skipped frame. Waiting for next vsync.");
}
traceMessage("Frame time goes backward");
scheduleVsyncLocked();
return;
}
if (mFPSDivisor > 1) {//这里不知道是啥
long timeSinceVsync = frameTimeNanos - mLastFrameTimeNanos;
if (timeSinceVsync < (frameIntervalNanos * mFPSDivisor) && timeSinceVsync > 0) {
traceMessage("Frame skipped due to FPSDivisor");
scheduleVsyncLocked();
return;
}
}
mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos,
vsyncEventData.preferredFrameTimeline().vsyncId,
vsyncEventData.preferredFrameTimeline().deadline, startNanos,
vsyncEventData.frameInterval);
mFrameScheduled = false;//复位mFrameScheduled
mLastFrameTimeNanos = frameTimeNanos;//将当前帧的消息作为历史帧进行记录了
mLastFrameIntervalNanos = frameIntervalNanos;
mLastVsyncEventData = vsyncEventData;
}
AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);
mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameData, frameIntervalNanos);//处理输入事件
mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameData, frameIntervalNanos);//处理动画
doCallbacks(Choreographer.CALLBACK_INSETS_ANIMATION, frameData,
frameIntervalNanos);
mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameData, frameIntervalNanos);//处理界面的重绘
doCallbacks(Choreographer.CALLBACK_COMMIT, frameData, frameIntervalNanos);//涉及视图的最终更新和提交。
} finally {
AnimationUtils.unlockAnimationClock();
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
if (DEBUG_FRAMES) {
final long endNanos = System.nanoTime();
Log.d(TAG, "Frame " + frame + ": Finished, took "
+ (endNanos - startNanos) * 0.000001f + " ms, latency "
+ (startNanos - frameTimeNanos) * 0.000001f + " ms.");
}
}
从上面的代码看内容比较多,其实总结起来就是两件事:1、记录当前帧的信息,将其作为历史帧;2、按需执行五个callback。
这里的callback是采用一个二维数组进行存储的,数组为:
private final CallbackQueue[] mCallbackQueues;
这个数组在Choreographer的构造函数中初始化:
mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
for (int i = 0; i <= CALLBACK_LAST; i++) {
mCallbackQueues[i] = new CallbackQueue();
}
其中CALLBACK_LAST值为4,所以就是一个5*n的数组,数组存储5类回调分别为:
public static final int CALLBACK_INPUT = 0;
public static final int CALLBACK_ANIMATION = 1;
public static final int CALLBACK_INSETS_ANIMATION = 2;
public static final int CALLBACK_TRAVERSAL = 3;
public static final int CALLBACK_COMMIT = 4;
其中2CALLBACK_INSETS_ANIMATIO的功能我不是很了解,而本次讲的界面刷新流程,就是第三类CALLBACK_TRAVERSAL了。也就是在postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis)方法中的这里,会根据type将action入队,然后等待后面的doFrame方法将action取出来再执行了。
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
9、 总结:
整个帧绘制的流程还是比较复杂的,但是我也在这个过程中,对消息机制等知识点,在流程中进行更加详细的分析和讲解。其中可能也存在理解不到位的地方,还希望大家多多指正。