目录
详细布置:
1. 491. 非递减子序列
2. 46. 全排列
3. 47. 全排列 II
详细布置:
1. 491. 非递减子序列
给你一个整数数组
nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
建议:本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。
本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
所以不能使用之前的去重逻辑!
本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。
为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:
class Solution:
def findSubsequences(self, nums):
result = []
path = []
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
if len(path) > 1:
result.append(path[:]) # 注意要使用切片将当前路径的副本加入结果集
# 注意这里不要加return,要取树上的节点
uset = set() # 使用集合对本层元素进行去重
for i in range(startIndex, len(nums)):
if (path and nums[i] < path[-1]) or nums[i] in uset:
continue
uset.add(nums[i]) # 记录这个元素在本层用过了,本层后面不能再用了
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
2. 46. 全排列
给定一个不含重复数字的数组
nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
建议:本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex
class Solution:
def permute(self, nums):
result = []
self.backtracking(nums, [], [False] * len(nums), result)
return result
def backtracking(self, nums, path, used, result):
if len(path) == len(nums):
result.append(path[:])
return
for i in range(len(nums)):
if used[i]:
continue
used[i] = True
path.append(nums[i])
self.backtracking(nums, path, used, result)
path.pop()
used[i] = False
3. 47. 全排列 II
给定一个可包含重复数字的序列
nums
,按任意顺序 返回所有不重复的全排列。
建议:本题 就是我们讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,可以先自己做一下,然后重点看一下 文章中 我讲的拓展内容。 used[i - 1] == true 也行,used[i - 1] == false 也行
还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
class Solution:
def permuteUnique(self, nums):
nums.sort() # 排序
result = []
self.backtracking(nums, [], [False] * len(nums), result)
return result
def backtracking(self, nums, path, used, result):
if len(path) == len(nums):
result.append(path[:])
return
for i in range(len(nums)):
if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:
continue
used[i] = True
path.append(nums[i])
self.backtracking(nums, path, used, result)
path.pop()
used[i] = False