基于LangChain的Prompt模板

news2025/1/12 23:17:58

简介: LangChain是一个开源库,简化了基于LLM的AI应用开发,充当AI开发的万能适配器,抽象并整合了大语言模型(如OpenAI和文心)的交互。要使用LangChain,首先通过pip install langchain安装。示例展示了如何使用LangChain与OpenAI模型交互,包括直接调用OpenAI接口和使用LangChain接口。LangChain的提示词模板功能用于构建Prompt,提高与AI对话的效率。LangChainHub是一个资源库,提供模板、工作流和最佳实践,方便开发者发现和分享。本文介绍了LangChain的基本用法和其生态系统中的LangChainHub。

1. 简述LangChain

LangChain是一个开源库,它致力于让开发基于LLM的AI应用更简单,它是一个AI开发领域的万能适配器。

它抽象化了与大语言模型(如OpenAI模型、文心模型等等)交互的复杂性,以及集成了周边的各种工具生态,让开发者可以专注于实现AI应用的逻辑和功能。LangChain提供了一系列易于使用的工具和抽象,使得与大语言模型的交互变得尽可能的简单明了。

使用之前,先安装LangChain:

pip install langchain

2. LangChain使用OpenAI模型

LangChain与各种AI大模型都做了适配,下面以OpenAI的模型为例,可以简单地通过LangChain来调用它。当然国内使用原生的OpenAI会有些障碍,本文主要使用代理模式,比如https://api.aigc369.com/v1

2.1、使用OpenAI的接口

from openai import OpenAI

# 实例化OpenAI模型
client = OpenAI(api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
                base_url="https://api.aigc369.com/v1")

# 使用LangChain的接口与模型交互
messages = [
    {
        "role": "system",
        "content": "请你作为我的生活小助手。"
    },
    {
        "role": "user",
        "content": "胳膊上起了红疹子怎么办?"
    }
]
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages= messages
)
content = response.choices[0].message.content
print(content)

2.2、使用LangChain的接口调用OpenAI的模型

from langchain_openai import ChatOpenAI

# 实例化OpenAI模型
model = ChatOpenAI(model="gpt-3.5-turbo",
                   openai_api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
                   openai_api_base="https://api.aigc369.com/v1")

# 使用LangChain的接口与模型交互
from langchain.schema.messages import HumanMessage, SystemMessage, AIMessage

messages = [
    SystemMessage(content="请你作为我的生活小助手。"),
    HumanMessage(content="胳膊上起了红疹子怎么办?"),
]
response = model.invoke(messages)
print(response.content)

3. 什么是提示词模板

在上一篇《Prompt提示词助力AI写作》里已经聊过Prompt提示词的概念,提示词的主要作用是为了更好的与AI对话,帮助引导AI产生更精确、更相关的文本。所以要尽可能的给AI讲清楚任务、背景、任务等核心要素。

那Prompt提示词模板是啥呢? Prompt提示词模板是在LangChain中使用,LangChain 中通过提示模板来构建最终的 Prompt。提示模板是 LangChain 的核心功能之一。

4. 怎么使用提示词模板

设想一下,如果你想让AI帮你把一段中文翻译成多种语言。那你可能要写多条类似的提示词,让AI一个个的去执行任务。或者你想让AI帮你批量的生成一些固定的邮件,只是中间的人名不同,你肯定也不想写多条类似的提示词。

此时使用提示词模板是最合适的。接下来举个例子,让AI将中文按照我们的要求翻译成多种语言:

from langchain_openai import ChatOpenAI
from langchain.prompts import (
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

system_template_text = "你是一位专业的翻译,能够将{input_language}翻译成{output_language}。请只输出翻译后的文本,不要有任何其它内容。"
system_prompt_template = SystemMessagePromptTemplate.from_template(system_template_text)

human_template_text = "文本:{text}"
human_prompt_template = HumanMessagePromptTemplate.from_template(human_template_text)

model = ChatOpenAI(model="gpt-3.5-turbo",
                   openai_api_key="sk-BuQK7SGbqCZP2i2z7fF267AeD0004eF095AbC78d2f79E019",
                   openai_api_base="https://api.aigc369.com/v1")

prompt_input_variables = [
    {
        "input_language": "中文",
        "output_language": "英语",
        "text": "我今天去超级买衣服",
    },
    {
        "input_language": "中文",
        "output_language": "法语",
        "text": "我今天去超级买衣服",
    },
    {
        "input_language": "中文",
        "output_language": "俄语",
        "text": "我今天去超级买衣服",
    },
    {
        "input_language": "中文",
        "output_language": "日语",
        "text": "我今天去超级买衣服",
    },
    {
        "input_language": "中文",
        "output_language": "韩语",
        "text": "我今天去超级买衣服",
    },
    {
        "input_language": "中文",
        "output_language": "意大利语",
        "text": "我今天去超级买衣服",
    }
]

for input in prompt_input_variables:
    response = model.invoke([
        system_prompt_template.format(input_language=input["input_language"], output_language=input["output_language"]),
        human_prompt_template.format(text=input["text"])])
    print(response.content)

SystemMessagePromptTemplate代码系统模板,HumanMessagePromptTemplate代表是用户消息模板。{input_language}{output_language}{text}是变量,最终通过format方法,替换成实际的值来生成最终的Prompt。最终使用LangChain的大模型类执行Prompt即可。

执行结果如下:

5. 什么是LangChainHub

如果碰到复杂场景,需要模型接入各种工具时,就要写复杂的提示词了,比如类似这样这个链接里的提示词模板。这么复杂的提示词写起来就有点尴尬了,幸好有LangChainHub。https://smith.langchain.com/hub/hwchase17/structured-chat-agent?organizationId=6e7cb68e-d5eb-56c1-8a8a-5a32467e2996。

LangChainHub 是一个围绕 LangChain 生态系统构建的平台。它能够让开发者更轻松地发现、分享和利用其他人创建的工作流、模板和组件。它相当于是一个丰富的社区资源库。

在 LangChainHub,你可以找到:

  • 提示词模板库:这些模板可以帮助你快速开始一个特定任务,比如生成特定格式的文本,或者进行一些复杂的逻辑处理。
  • 可重复使用的流程:如果你有常见的工作流,你可以在LangChainHub上找到现成的流程,或者将你的工作流分享给社区。
  • 最佳实践的共享:在 LangChainHub 上,开发者可以分享他们的经验教训和解决方案,帮助其他开发者避坑。

比如,从 LangChainHub 寻找某个功能的提示词模板,可以直接这样搞:

from langchain import hub
prompt = hub.pull("hwchase17/structured-chat-agent")
print(prompt)

后续再继续详聊LangChainHub。

总结

本文主要聊了LangChain,还聊了如何使用LangChain与OpenAI模型进行提示词模板的交互。希望对你有帮助。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1810998.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

还在为复制粘贴烦恼吗?这5个工具帮你轻松搞定

在日常工作中,CtrlC和CtrlV无疑是我们使用最为频繁的快捷键组合。 复制粘贴,轻松快捷。 但是在使用中,也会有一点不便,那就是无法保存剪贴历史内容。 比如我说复制之后,我想要想要找回这一次复制之前的内容&#xf…

2024年,计算机相关专业还值得选择吗?

计算机专业:2024年的热门选择还是明智之选? 随着2024年高考的尘埃落定,许多考生和家长都站在了人生新的十字路口,思考着如何为未来的职业生涯铺设基石。在众多专业中,计算机相关专业始终占据着一席之地,其…

javaspringbootmysql小程序的竞赛管理系统71209-计算机毕业设计项目选题推荐(附源码)

摘 要 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景, 运用软件工程原理和开发方法,它主要是采用java语言技术和mysql数库来完成对系统的设计。整个开发过程首先对竞赛管理系统进行需求分…

上位机图像处理和嵌入式模块部署(f407 mcu中的网络开发)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 和大家想的不太一样,只要mcu当中带有了mac ip,那么就意味着mcu本身支持了网络开发。但是如果需要mcu支持完整的tcp/ip&…

用友U8 表单视图名查询方法

比如要获取【采购订单】表名和视图名 具体操作如下: 先打开写字板,然后进入U8的采购订单做单界面,按住键盘上的,CtrlshiftC,有的是CtrlC,点增加 然后CtrlV到写字板 key就是采购订单的值 打开SQL 输入语句…

《大道平渊》· 拾贰 —— 天下大事必作于细:做好每一件小事,必然大有所成!

《平渊》 拾贰 "天下难事必作于易,天下大事必作于细。" 社群一位大佬最近在研究新项目, 他做事的 "方法论" 令我深受启发。 他在测试项目时, 每一步都做的非常细致: 整个项目的测试都被划分为一件件小事, 然后有条不紊地推进…… …

React+TS前台项目实战(六)-- 全局常用组件Button封装

文章目录 前言Button组件1. 功能分析2. 代码注释说明3. 使用方式4. 效果展示 总结 前言 今天这篇主要讲全局按钮组件封装,可根据UI设计师要求自定义修改。 Button组件 1. 功能分析 (1)可以通过className属性自定义按钮样式,传递…

多客圈子论坛系统 httpGet 任意文件读取漏洞复现

0x01 产品简介 多客圈子论坛系统是一种面向特定人群或特定话题的社交网络,它提供了用户之间交流、分享、讨论的平台。在这个系统中,用户可以创建、加入不同的圈子,圈子可以是基于兴趣、地域、职业等不同主题的。用户可以在圈子中发帖、评论、…

运营商大模型进化之路:策略分野与AI未来的璀璨展望

运营商大模型的进化路线“分野”与AI大模型的璀璨前景 随着人工智能技术的飞速发展,AI大模型已成为推动科技进步和产业变革的重要力量。在这个浪潮中,运营商作为通信行业的巨头,也纷纷投入大模型的研发与应用,探索出各自独特的进化…

css 剪切属性clip-path

实现效果如下&#xff1a; <!DOCTYPE html> <html><head><style>.clipped {width: 200px;height: 200px;background-color: #3498db;clip-path: polygon(0% 0%, 100% 0%, 100% 100%, 30% 100%);}</style></head><body><div cla…

弘君资本股市资讯:增逾20倍!百亿细分龙头利好来了

5月以来&#xff0c;A股进入了时间短的成绩发表空档期&#xff0c;而百亿化工细分龙头齐翔腾达&#xff0c;则以一份高增的成绩预告&#xff0c;摆开半年报成绩预告发表序幕。 6月10日晚间&#xff0c;齐翔腾达发表的成绩预告显现&#xff0c;上半年估计完成归母净赢利1.3亿元…

全球Web数据库管理工具推荐(ChatGPT 4o的推荐是什么样?)

在现代数据管理和开发中&#xff0c;Web数据库管理工具变得越来越重要。这些工具不仅提供了直观的用户界面&#xff0c;还支持跨平台操作&#xff0c;方便用户在任何地方进行数据库管理。 目录 1. SQLynx 2. phpMyAdmin 3. Adminer 4. DBeaver 5 结论 以下是几款推荐的Web…

家具板材ENF级甲醛释放量检测 板材甲醛含量测定

ENF级甲醛释放量检测 ENF级是指甲醛释放量非常低的板材&#xff0c;它代表了无醛添加的最高级别。根据最新的国家标准GB/T 39600-2021&#xff0c;ENF级板材的甲醛释放量不得超过0.025 mg/m。这个标准比欧洲的E1级&#xff08;甲醛释放量≤0.124 mg/m&#xff09;和美国的P2标准…

Doris 2.1 元数据更新

metadata_refresh_interval_sec 20

Java Opencv识别图片上的虫子

最近有个需求&#xff0c;希望识别图片上的虫子&#xff0c;对于java来说&#xff0c;图像识别不是很好做。在网上也搜索了很多&#xff0c;很多的代码都是不完整&#xff0c;或者下载下载报错&#xff0c;有的写的很长看不懂。所以自己试着用java的opencv写了一段代码。发现识…

【渗透测试】|dvwa命令注入乱码问题

法一&#xff1a; 解决方法如下&#xff1a; 1、按住winr&#xff0c;在运行框中输入cmd弹出命令行&#xff0c;在命令行中输入“control intl.cpl” 2、这个命令是使用control命令行工具来打开"区域和语言设置"对话框 3、选中对话框中的管理选项卡 4、可以看到这里…

跨平台电商数据对比:淘宝与他者的较量

——比较分析淘宝和其他电商平台&#xff08;如京东、拼多多&#xff09;的数据&#xff0c;探索各自的优势和市场定位 在当今的电子商务领域&#xff0c;跨平台电商数据对比成为了企业制定策略和优化运营的重要工具。淘宝作为中国最大的电商平台之一&#xff0c;与京东、拼多…

HTML、HTML5一览

文章目录 HTML简介标签基本标签格式化文本链接图像块级元素列表表格框架表单实体 HTML5 此篇用于优化csdn第一篇文章 HTML 简介 HTML 是用来描述网页的一种语言。 HTML 指的是超文本标记语言: HyperText Markup Language HTML 不是一种编程语言&#xff0c;而是一种标记语言…

进口电动三通调节阀的应用-美国品牌

进口电动三通调节阀在多个工业领域中发挥着重要作用&#xff0c;通过精确的流体控制&#xff0c;提高生产效率、降低能源消耗、保证产品质量和安全。其应用主要体现在以下几个方面&#xff1a; 化工领域&#xff1a; 用于化工反应过程中的流体调控、物料输送、加热、冷却、混合…