简介: LangChain是一个开源库,简化了基于LLM的AI应用开发,充当AI开发的万能适配器,抽象并整合了大语言模型(如OpenAI和文心)的交互。要使用LangChain,首先通过pip install langchain
安装。示例展示了如何使用LangChain与OpenAI模型交互,包括直接调用OpenAI接口和使用LangChain接口。LangChain的提示词模板功能用于构建Prompt,提高与AI对话的效率。LangChainHub是一个资源库,提供模板、工作流和最佳实践,方便开发者发现和分享。本文介绍了LangChain的基本用法和其生态系统中的LangChainHub。
1. 简述LangChain
LangChain是一个开源库,它致力于让开发基于LLM的AI应用更简单,它是一个AI开发领域的万能适配器。
它抽象化了与大语言模型(如OpenAI模型、文心模型等等)交互的复杂性,以及集成了周边的各种工具生态,让开发者可以专注于实现AI应用的逻辑和功能。LangChain提供了一系列易于使用的工具和抽象,使得与大语言模型的交互变得尽可能的简单明了。
使用之前,先安装LangChain:
pip install langchain
2. LangChain使用OpenAI模型
LangChain与各种AI大模型都做了适配,下面以OpenAI的模型为例,可以简单地通过LangChain来调用它。当然国内使用原生的OpenAI会有些障碍,本文主要使用代理模式,比如https://api.aigc369.com/v1
。
2.1、使用OpenAI的接口
from openai import OpenAI
# 实例化OpenAI模型
client = OpenAI(api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
base_url="https://api.aigc369.com/v1")
# 使用LangChain的接口与模型交互
messages = [
{
"role": "system",
"content": "请你作为我的生活小助手。"
},
{
"role": "user",
"content": "胳膊上起了红疹子怎么办?"
}
]
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages= messages
)
content = response.choices[0].message.content
print(content)
2.2、使用LangChain的接口调用OpenAI的模型
from langchain_openai import ChatOpenAI
# 实例化OpenAI模型
model = ChatOpenAI(model="gpt-3.5-turbo",
openai_api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
openai_api_base="https://api.aigc369.com/v1")
# 使用LangChain的接口与模型交互
from langchain.schema.messages import HumanMessage, SystemMessage, AIMessage
messages = [
SystemMessage(content="请你作为我的生活小助手。"),
HumanMessage(content="胳膊上起了红疹子怎么办?"),
]
response = model.invoke(messages)
print(response.content)
3. 什么是提示词模板
在上一篇《Prompt提示词助力AI写作》里已经聊过Prompt提示词的概念,提示词的主要作用是为了更好的与AI对话,帮助引导AI产生更精确、更相关的文本。所以要尽可能的给AI讲清楚任务、背景、任务等核心要素。
那Prompt提示词模板是啥呢? Prompt提示词模板是在LangChain中使用,LangChain 中通过提示模板来构建最终的 Prompt。提示模板
是 LangChain 的核心功能之一。
4. 怎么使用提示词模板
设想一下,如果你想让AI帮你把一段中文翻译成多种语言。那你可能要写多条类似的提示词,让AI一个个的去执行任务。或者你想让AI帮你批量的生成一些固定的邮件,只是中间的人名不同,你肯定也不想写多条类似的提示词。
此时使用提示词模板是最合适的。接下来举个例子,让AI将中文按照我们的要求翻译成多种语言:
from langchain_openai import ChatOpenAI
from langchain.prompts import (
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
system_template_text = "你是一位专业的翻译,能够将{input_language}翻译成{output_language}。请只输出翻译后的文本,不要有任何其它内容。"
system_prompt_template = SystemMessagePromptTemplate.from_template(system_template_text)
human_template_text = "文本:{text}"
human_prompt_template = HumanMessagePromptTemplate.from_template(human_template_text)
model = ChatOpenAI(model="gpt-3.5-turbo",
openai_api_key="sk-BuQK7SGbqCZP2i2z7fF267AeD0004eF095AbC78d2f79E019",
openai_api_base="https://api.aigc369.com/v1")
prompt_input_variables = [
{
"input_language": "中文",
"output_language": "英语",
"text": "我今天去超级买衣服",
},
{
"input_language": "中文",
"output_language": "法语",
"text": "我今天去超级买衣服",
},
{
"input_language": "中文",
"output_language": "俄语",
"text": "我今天去超级买衣服",
},
{
"input_language": "中文",
"output_language": "日语",
"text": "我今天去超级买衣服",
},
{
"input_language": "中文",
"output_language": "韩语",
"text": "我今天去超级买衣服",
},
{
"input_language": "中文",
"output_language": "意大利语",
"text": "我今天去超级买衣服",
}
]
for input in prompt_input_variables:
response = model.invoke([
system_prompt_template.format(input_language=input["input_language"], output_language=input["output_language"]),
human_prompt_template.format(text=input["text"])])
print(response.content)
SystemMessagePromptTemplate
代码系统模板,HumanMessagePromptTemplate
代表是用户消息模板。{input_language}
、{output_language}
、{text}
是变量,最终通过format
方法,替换成实际的值来生成最终的Prompt。最终使用LangChain的大模型类执行Prompt即可。
执行结果如下:
5. 什么是LangChainHub
如果碰到复杂场景,需要模型接入各种工具时,就要写复杂的提示词了,比如类似这样这个链接里的提示词模板。这么复杂的提示词写起来就有点尴尬了,幸好有LangChainHub。https://smith.langchain.com/hub/hwchase17/structured-chat-agent?organizationId=6e7cb68e-d5eb-56c1-8a8a-5a32467e2996。
LangChainHub 是一个围绕 LangChain 生态系统构建的平台。它能够让开发者更轻松地发现、分享和利用其他人创建的工作流、模板和组件。它相当于是一个丰富的社区资源库。
在 LangChainHub,你可以找到:
- 提示词模板库:这些模板可以帮助你快速开始一个特定任务,比如生成特定格式的文本,或者进行一些复杂的逻辑处理。
- 可重复使用的流程:如果你有常见的工作流,你可以在LangChainHub上找到现成的流程,或者将你的工作流分享给社区。
- 最佳实践的共享:在 LangChainHub 上,开发者可以分享他们的经验教训和解决方案,帮助其他开发者避坑。
比如,从 LangChainHub 寻找某个功能的提示词模板,可以直接这样搞:
from langchain import hub
prompt = hub.pull("hwchase17/structured-chat-agent")
print(prompt)
后续再继续详聊LangChainHub。
总结
本文主要聊了LangChain,还聊了如何使用LangChain与OpenAI模型进行提示词模板的交互。希望对你有帮助。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈