文章目录
- 前言
- 一、epoch,batch-size和iteration
- 二、示例
- 1.说明
- 2.代码示例
- 总结
前言
介绍PyTorch中加载数据集的相关操作。Dataset和DataLoader
一、epoch,batch-size和iteration
epoch:所有训练数据完成一次前馈和反馈
batch-size:每次小样本选取的数量
iteration:样本总数除以batch-size
二、示例
1.说明
1.Dataset为抽象类,不能实例化对象,只能继承来用。
2.DataLoader用于帮助加载数据。
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=2)
dataset:数据集
batch_size:每一批次的数据大小
shuffle:是否打乱随机取,增加随机性
num_workers:多线程
2.代码示例
代码如下(示例):
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
# prepare dataset
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
self.len = xy.shape[0] # shape(多少行,多少列)
self.x_data = torch.from_numpy(xy[:, :-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=2) # num_workers 多线程
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# training cycle forward, backward, update
if __name__ == '__main__':
epoch_list = []
loss_list = []
for epoch in range(100):
epoch_list.append(epoch)
loss_temp = 0
for i, data in enumerate(train_loader, 0): # train_loader 是先shuffle后mini_batch
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
loss_temp += loss.item()
print(epoch, i, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(loss_temp)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
得到如下结果:
总结
PyTorch学习7:加载数据集