Langchain 新玩法:LangGraph 赋能 RAG Agent,自适应、自校正、Self-RAG

news2025/1/15 23:29:31

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

汇总合集:

《AIGC 面试宝典》(2024版) 发布!

《大模型面试宝典》(2024版) 发布!


在我们不断追求更准确、更可靠的语言模型(LM)的过程中,创新的方法如检索增强生成(RAG)正在兴起。

然而,对检索到的文档的依赖性带来了相关性和准确性的挑战,迫切需要增强鲁棒性。

在本文中,我们很高兴探讨三个开创性框架的结合:纠正性检索增强生成(CRAG)、自反性检索增强生成(Self-RAG)和自适应QA框架Langchain的LangGraph,这三者共同重新定义了语言模型的能力。

在这里插入图片描述

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN

定义

我们将结合RAG论文中的思想形成一个RAG代理:

路由:自适应RAG(论文):该框架能够动态路由问题到不同的检索方法,确保检索到最相关的信息以生成响应。

在这里插入图片描述

回退:纠正RAG(论文):如果文档被认为与查询不相关,该机制会无缝地回退到网络搜索,确保生成准确且有上下文相关的响应。

在这里插入图片描述

自我纠正:Self-RAG(论文):通过在LM生成中引入自我反思,该框架使模型能够修正受幻觉影响或不回答问题的答案,从而增强各项任务的事实性和多功能性。
在这里插入图片描述

通过将LangGraph纳入RAG框架,LMs能够获得更丰富的知识表示,增强其生成准确且有上下文相关响应的能力。

整合的好处:

将CRAG、Self-RAG、自适应RAG整合到现有语言模型中可以解锁多种好处。

CRAG通过缓解与次优检索相关的不准确性,增强了基于RAG的方法的鲁棒性,确保生成响应的可靠性。
Self-RAG通过引入自我反思,革命性地提升了LM的能力,显著增强了各项任务的事实性和多功能性。
自适应RAG提供了一个动态解决方案,以应对用户查询的复杂性,优化多个数据集的效率和准确性。

代码实现

让我们深入了解如何使用CRAG、Self-RAG、自适应RAG与Langchain的LangGraph。

以下是步骤:

步骤一:安装库

!pip install -U langchain-nomic langchain_community tiktoken langchainhub chromadb langchain langgraph tavily-python langchain-nomic

# LLM
ollama pull llama3

local_llm = 'llama3'

# Tracing
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
os.environ['LANGCHAIN_API_KEY'] = 

步骤二:导入库

### Index

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import GPT4AllEmbeddings

urls = [
    "https://lilianweng.github.io/posts/2023-06-23-agent/",
    "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
    "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
]

docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]

text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=250, chunk_overlap=0
)
doc_splits = text_splitter.split_documents(docs_list)

# Add to vectorDB
vectorstore = Chroma.from_documents(
    documents=doc_splits,
    collection_name="rag-chroma",
    embedding=GPT4AllEmbeddings(),
)
retriever = vectorstore.as_retriever()

检索评分

from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import JsonOutputParser

# LLM
llm = ChatOllama(model=local_llm, format="json", temperature=0)

prompt = PromptTemplate(
    template="""system You are a grader assessing relevance 
    of a retrieved document to a user question. If the document contains keywords related to the user question, 
    grade it as relevant. It does not need to be a stringent test. The goal is to filter out erroneous retrievals. \n
    Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
    Provide the binary score as a JSON with a single key 'score' and no premable or explaination.
     user
    Here is the retrieved document: \n\n {document} \n\n
    Here is the user question: {question} \n assistant
    """,
    input_variables=["question", "document"],
)

retrieval_grader = prompt | llm | JsonOutputParser()
question = "agent memory"
docs = retriever.invoke(question)
doc_txt = docs[1].page_content
print(retrieval_grader.invoke({"question": question, "document": doc_txt}))

# Output
{'score': 'yes'}

生成

from langchain.prompts import PromptTemplate
from langchain import hub
from langchain_core.output_parsers import StrOutputParser

# Prompt
prompt = PromptTemplate(
    template="""system You are an assistant for question-answering tasks. 
    Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. 
    Use three sentences maximum and keep the answer concise user
    Question: {question} 
    Context: {context} 
    Answer: assistant""",
    input_variables=["question", "document"],
)

llm = ChatOllama(model=local_llm, temperature=0)

# Post-processing
def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

# Chain
rag_chain = prompt | llm | StrOutputParser()

# Run
question = "agent memory"
docs = retriever.invoke(question)
generation = rag_chain.invoke({"context": docs, "question": question})
print(generation)

## Output
The context mentions that the memory component of an LLM-powered autonomous 
agent system includes a long-term memory module (external database) that record
s a comprehensive list of agents' experience in natural language, referred to 
as "memory stream". This suggests that the agent has some form of memory or 
recall mechanism.

幻觉评分

# LLM
llm = ChatOllama(model=local_llm, format="json", temperature=0)

# Prompt
prompt = PromptTemplate(
    template=""" system You are a grader assessing whether 
    an answer is grounded in / supported by a set of facts. Give a binary score 'yes' or 'no' score to indicate 
    whether the answer is grounded in / supported by a set of facts. Provide the binary score as a JSON with a 
    single key 'score' and no preamble or explanation. user
    Here are the facts:
    \n ------- \n
    {documents} 
    \n ------- \n
    Here is the answer: {generation}  assistant""",
    input_variables=["generation", "documents"],
)

hallucination_grader = prompt | llm | JsonOutputParser()
hallucination_grader.invoke({"documents": docs, "generation": generation})

答案评分

# LLM
llm = ChatOllama(model=local_llm, format="json", temperature=0)

# Prompt
prompt = PromptTemplate(
    template="""system You are a grader assessing whether an 
    answer is useful to resolve a question. Give a binary score 'yes' or 'no' to indicate whether the answer is 
    useful to resolve a question. Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.
     user Here is the answer:
    \n ------- \n
    {generation} 
    \n ------- \n
    Here is the question: {question} assistant""",
    input_variables=["generation", "question"],
)

answer_grader = prompt | llm | JsonOutputParser()
answer_grader.invoke({"question": question,"generation": generation})

步骤三:路由器

路由器

from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import JsonOutputParser

# LLM
llm = ChatOllama(model=local_llm, format="json", temperature=0)

prompt = PromptTemplate(
    template="""system You are an expert at routing a 
    user question to a vectorstore or web search. Use the vectorstore for questions on LLM  agents, 
    prompt engineering, and adversarial attacks. You do not need to be stringent with the keywords 
    in the question related to these topics. Otherwise, use web-search. Give a binary choice 'web_search' 
    or 'vectorstore' based on the question. Return the a JSON with a single key 'datasource' and 
    no premable or explaination. Question

 to route: {question} assistant""",
    input_variables=["question"],
)

question_router = prompt | llm | JsonOutputParser()
question = "llm agent memory"
docs = retriever.get_relevant_documents(question)
doc_txt = docs[1].page_content
print(question_router.invoke({"question": question}))

# Output
{'datasource': 'vectorstore'}

步骤四:搜索

搜索

from langchain_community.tools.tavily_search import TavilySearchResults
web_search_tool = TavilySearchResults(k=3)

步骤五:LangGraph控制流

from typing_extensions import TypedDict
from typing import List

### State

class GraphState(TypedDict):
    """
    Represents the state of our graph.

    Attributes:
        question: question
        generation: LLM generation
        web_search: whether to add search
        documents: list of documents 
    """
    question : str
    generation : str
    web_search : str
    documents : List[str]

from langchain.schema import Document

### Nodes

def retrieve(state):
    """
    Retrieve documents from vectorstore

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): New key added to state, documents, that contains retrieved documents
    """
    print("---RETRIEVE---")
    question = state["question"]

    # Retrieval
    documents = retriever.invoke(question)
    return {"documents": documents, "question": question}

def generate(state):
    """
    Generate answer using RAG on retrieved documents

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): New key added to state, generation, that contains LLM generation
    """
    print("---GENERATE---")
    question = state["question"]
    documents = state["documents"]
    
    # RAG generation
    generation = rag_chain.invoke({"context": documents, "question": question})
    return {"documents": documents, "question": question, "generation": generation}

def grade_documents(state):
    """
    Determines whether the retrieved documents are relevant to the question
    If any document is not relevant, we will set a flag to run web search

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): Filtered out irrelevant documents and updated web_search state
    """

    print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
    question = state["question"]
    documents = state["documents"]
    
    # Score each doc
    filtered_docs = []
    web_search = "No"
    for d in documents:
        score = retrieval_grader.invoke({"question": question, "document": d.page_content})
        grade = score['score']
        # Document relevant
        if grade.lower() == "yes":
            print("---GRADE: DOCUMENT RELEVANT---")
            filtered_docs.append(d)
        # Document not relevant
        else:
            print("---GRADE: DOCUMENT NOT RELEVANT---")
            # We do not include the document in filtered_docs
            # We set a flag to indicate that we want to run web search
            web_search = "Yes"
            continue
    return {"documents": filtered_docs, "question": question, "web_search": web_search}
    
def web_search(state):
    """
    Web search based based on the question

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): Appended web results to documents
    """

    print("---WEB SEARCH---")
    question = state["question"]
    documents = state["documents"]

    # Web search
    docs = web_search_tool.invoke({"query": question})
    web_results = "\n".join([d["content"] for d in docs])
    web_results = Document(page_content=web_results)
    if documents is not None:
        documents.append(web_results)
    else:
        documents = [web_results]
    return {"documents": documents, "question": question}

### Conditional edge

def route_question(state):
    """
    Route question to web search or RAG.

    Args:
        state (dict): The current graph state

    Returns:
        str: Next node to call
    """

    print("---ROUTE QUESTION---")
    question = state["question"]
    print(question)
    source = question_router.invoke({"question": question})  
    print(source)
    print(source['datasource'])
    if source['datasource'] == 'web_search':
        print("---ROUTE QUESTION TO WEB SEARCH---")
        return "websearch"
    elif source['datasource'] == 'vectorstore':
        print("---ROUTE QUESTION TO RAG---")
        return "vectorstore"

def decide_to_generate(state):
    """
    Determines whether to generate an answer, or add web search

    Args:
        state (dict): The current graph state

    Returns:
        str: Binary decision for next node to call
    """

    print("---ASSESS GRADED DOCUMENTS---")
    question = state["question"]
    web_search = state["web_search"]
    filtered_documents = state["documents"]

    if web_search == "Yes":
        # All documents have been filtered check_relevance
        # We will re-generate a new query
        print("---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, INCLUDE WEB SEARCH---")
        return "websearch"
    else:
        # We have relevant documents, so generate answer
        print("---DECISION: GENERATE---")
        return "generate"

### Conditional edge

def grade_generation_v_documents_and_question(state):
    """
    Determines whether the generation is grounded in the document and answers question.

    Args:
        state (dict): The current graph state

    Returns:
        str: Decision for next node to call
    """

    print("---CHECK HALLUCINATIONS---")
    question = state["question"]
    documents = state["documents"]
    generation = state["generation"]

    score = hallucination_grader.invoke({"documents": documents, "generation": generation})
    grade = score['score']

    # Check hallucination
    if grade == "yes":
        print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
        # Check question-answering
        print("---GRADE GENERATION vs QUESTION---")
        score = answer_grader.invoke({"question": question,"generation": generation})
        grade = score['score']
        if grade == "yes":
            print("---DECISION: GENERATION ADDRESSES QUESTION---")
            return "useful"
        else:
            print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
            return "not useful"
    else:
        pprint("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
        return "not supported"

from langgraph.graph import END, StateGraph
workflow = StateGraph(GraphState)

# Define the nodes
workflow.add_node("websearch", web_search) # web search
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae

步骤六:图构建

# Build graph
workflow.set_conditional_entry_point(
    route_question,
    {
        "websearch": "websearch",
        "vectorstore": "retrieve",
    },
)

workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
    "grade_documents",
    decide_to_generate,
    {
        "websearch": "websearch",
        "generate": "generate",
    },
)
workflow.add_edge("websearch", "generate")
workflow.add_conditional_edges(
    "generate",
    grade_generation_v_documents_and_question,
    {
        "not supported": "generate",
        "useful": END,
        "not useful": "websearch",
    },
)
# Compile
app = workflow.compile()

# Test
from pprint import pprint
inputs = {"question": "What are the types of agent memory?"}
for output in app.stream(inputs):
    for key, value in output.items():
        pprint(f"Finished running: {key}:")
pprint(value["generation"])

#Output
---ROUTE QUESTION---
What are the types of agent memory?
{'datasource': 'vectorstore'}
vectorstore
---ROUTE QUESTION TO RAG---
---RETRIEVE---
'Finished running: retrieve:'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
'Finished running: grade_documents:'
---GENERATE---
---CHECK HALLUCINATIONS---
---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---
---GRADE GENERATION vs QUESTION---
---DECISION: GENERATION ADDRESSES QUESTION---
'Finished running: generate:'
('According to the provided context, there are several types of memory '
 'mentioned:\n'
 '\n'
 '1. Sensory Memory: This is the earliest stage of memory, providing the '
 'ability to retain impressions of sensory information (visual, auditory, etc) '
 'after the original stimuli have ended.\n'
 '2. Maximum Inner Product Search (MIPS): This is a long-term memory module '
 "that records a comprehensive list of agents' experience in natural "
 'language.\n'
 '\n'
 'These are the types of agent memory mentioned in the context.')

结论

总之,CRAG、Self-RAG和自适应RAG的整合代表了语言模型领域的重大进展。这些框架不仅增强了现有模型的可靠性和多功能性,还为未来的

用通俗易懂的方式讲解系列

  • 重磅来袭!《大模型面试宝典》(2024版) 发布!

  • 重磅来袭!《大模型实战宝典》(2024版) 发布!

  • 用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库

  • 用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程

  • 用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain

  • 用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库

  • 用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结

  • 用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调

  • 用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了

  • 用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理

  • 用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南

  • 用通俗易懂的方式讲解:大模型训练过程概述

  • 用通俗易懂的方式讲解:专补大模型短板的RAG

  • 用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践

  • 用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践

  • 用通俗易懂的方式讲解:大模型微调方法总结

  • 用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了

  • 用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!

  • 用通俗易懂的方式讲解:九大最热门的开源大模型 Agent 框架来了

参考链接:https://ai.gopubby.com/unifying-rag-frameworks-harnessing-the-power-of-adaptive-routing-corrective-fallback-and-1af2545fbfb3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1804879.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【讯为Linux驱动开发】5.并发与竞争

并发:一个CPU在一个时间片只能执行一个任务,切换速度很快。 并行:双核CPU,真正的同时执行两个任务 并行就是并发的理想情况,统称并发。 【问】Linux在什么情况下产生并发? 1.中断中修改公共资源 2.抢占…

【UML用户指南】-11-对高级结构建模-高级关系

目录 1、依赖(dependency) 1.1.1、绑定(bind) 1.1.2、导出(derive) 1.1.3、允许(permit) 1.1.4、实例(instanceOf) 1.1.5、实例化(instanti…

【PL理论】(11) F#:标准库之 Set | 标准库之 Map

💭 写在前面:本章我们将简要的介绍一下 Set 和 Map (非常简要,简要至极) 目录 0x00 标准库之集合(Set) 0x01 标准库之 Map 0x00 标准库之集合(Set) 集合中的元素具有…

【调整堆】(C++ 代码实现 注释详解)

自定义结构体: #define sz 105 typedef struct node{int length;int l[sz]; }SqList; 调整堆的函数: HeapAdjust函数思路说明: //目标:将以s为根的子树调整为大根堆 //具体操作:将路径上比s大的都往上移动,s往下移…

屏幕空间反射技术在AI绘画中的作用

在数字艺术和游戏开发的世界中,真实感渲染一直是追求的圣杯。屏幕空间反射(Screen Space Reflection,SSR)技术作为一种先进的图形处理手段,它通过在屏幕空间内模拟光线的反射来增强场景的真实感和视觉冲击力。随着人工…

selenium-java自动化教程

文章目录 Selenium支持语言WebDriver 开始使用chromedriver模拟用户浏览访问模拟点击事件关闭弹窗,选中元素并点击 获取页面文本结语 Selenium Selenium是一个自动化测试工具,可以模拟用户操作web端浏览器的行为,包括点击、输入、选择等。也可…

第十一届蓝桥杯C++青少年组中/高级组省赛2020年真题解析

一、单选题 第1题 表达式 ‘6’ - ‘1’ 的值是( ) A:整数 5 B:字符 5 C:表达式不合法 D:字符 6 答案:A 在 C 中,字符字面量用单引号括起来,例如 ‘6’ 和 ‘1’。这些字符字面量实际上是表示字符的 ASCII 值。在 ASCII 编码中&#xff0…

【机器学习】消息传递神经网络(MPNN)在分子预测领域的医学应用

1. 引言 1.1. 分子性质预测概述 分子性质预测是计算机辅助药物发现流程中至关重要的任务之一,它在许多下游应用如药物筛选和药物设计中发挥着核心作用: 1.1.1. 目的与重要性: 分子性质预测旨在通过分子内部信息(如原子坐标、原…

2.数人数

上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/431 题目描述 在一个班级里,男生比女生多…

MySQL—多表查询—子查询(介绍)

一、引言 上一篇博客学习完联合查询。 这篇开始,就来到多表查询的最后一种形式语法块——子查询。 (1)概念 SQL 语句中嵌套 SELECT 语句,那么内部的 select 称为嵌套查询,又称子查询。 表现形式 注意: …

达梦8 开启物理逻辑日志对系统的影响

物理逻辑日志,是按照特定的格式存储的服务器的逻辑操作,专门用于 DBMS_LOGMNR 包挖掘获取数据库系统的历史执行语句。当开启记录物理逻辑日志的功能时,这部分日志内 容会被存储在重做日志文件中。 要开启物理逻辑日志的功能,需要…

11.Spring AOP

文章目录 1.什么是 Spring AOP?2.为什要用 AOP?3.Spring AOP 应该怎么学习呢?3.1 AOP 组成3.1.1 切⾯(Aspect) 切点 通知3.1.2 连接点(Join Point)3.1.3 切点(Pointcut)…

《Brave New Words 》1.1 抛弃瓶子

Part I: Rise of the AI Tutor 第一部分:AI 导师的崛起 A great teacher can teach calculus with a paper clip and literature in an empty field. Technology is just another tool, not a destination. —Unknown 一位伟大的教师可以用回形针教微积分&#xff0…

Coze入门指南:创建Bot时,如何写好人设与回复逻辑(Persona Prompt)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 Coze Bot 📒📝 Persona & Prompt🌟 # Character🌟 ## Skills🌟 # Overall Rules to follow🌟 ## Workflow🌟 ## Constraints📝 通用写法与模板📝 示例🌟技巧和注意事项⚓️ 相关链接 ⚓️📖 介绍 📖…

11.闰年的判定

上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/615 题目描述 给定一个正整数 𝑦y 表示…

二进制中1的个数-java

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、二进制中1的个数 二、算法思路 1.将一个整数转化成二进制形式 2.查询一个数的二进制数中的第k位是多少 3.lowbit(x)操作 三、代码如下 1.代码如下&…

Jmeter 压力测测试的简单入门

下载安装 官方网站:Apache JMeter - Download Apache JMeter 下载完成解压即可。 配置 1. 找到 bin 目录下的 ApacheJMeter.jar 包,直接打开 如果向图片这样不能直接打开,就在此路径运行 CMD,然后输入下面的命令即可启动。 ja…

React实现在线预览word报告/本地选择报告预览

标题使用的核心技术点是docx-preview,读取到文件的File对象,用File去做文件展示,这里是才用将文件转base64字符串存储到localStorage中 在线预览word报告且包含word样式 下载需要使用的min.js文件进项目的public目录中(上zip已包…

彼长技以助己(4)边界思维

彼长技以助己(4)边界思维 边界思维 接下来是工程思维中的第二个思维:边界思维。它是适用于所有工程领域,事半功倍的方法,很值得大家去学习掌握。 我们做任何事情都是有边界的,技术有边界、人工智能有边界…

ctfshow-web入门-命令执行(web42知识铺垫与四种常见截断方法)

目录 1、知识铺垫 (1)文件描述符 (2)/dev/null 2、代码审计 3、命令分隔 (1)使用分号 ; (2)使用逻辑或 || (3)使用 && 或者 & 4、%0a …