MobileNetV4实战:使用 MobileNetV4实现图像分类任务(二)

news2025/1/17 15:35:08

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整策略
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 测试
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
MobileNetV4实战:使用MobileNetV4实现图像分类任务(一)
前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实验效果等内容。接下来,这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.mobilenetv4 import mobilenetv4_conv_large
from torch.autograd import Variable
from torchvision import datasets

torch.backends.cudnn.benchmark = False
import warnings

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'checkpoints/MN4/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 300
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True  # 是否开启dp方式的多卡训练
    classes = 12
    resume = None
    CLIP_GRAD = 5.0
    Best_ACC = 0  # 记录最高得分
    use_ema = True
    model_ema_decay = 0.9998
    start_epoch = 1
    seed = 1
    seed_everything(seed)

创建一个名为 ‘checkpoints/MN4/’ 的文件夹,用于保存训练过程中的模型。如果该文件夹已经存在,则不会再次创建,否则会创建该文件夹。

设置训练模型的全局参数,包括学习率、批次大小、训练轮数、设备选择(是否使用 GPU)、是否使用混合精度、是否开启数据并行等。

注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema,如果没有使用预训练模型,直接打开use_ema会造成不上分的情况。可以先关闭ema训练几个epoch,然后,将训练的权重赋值到resume,再将启用ema

model_ema_decay:设置了EMA的衰减率。衰减率决定了当前模型权重和之前的EMA权重在更新新的EMA权重时的相对贡献。具体来说,每次更新EMA权重时,都会按照以下公式进行:
newemaweight = decay × oldemaweight + ( 1 − decay ) × currentmodelweight \text{newemaweight} = \text{decay} \times \text{oldemaweight} + (1 - \text{decay}) \times \text{currentmodelweight} newemaweight=decay×oldemaweight+(1decay)×currentmodelweight
例如,衰减率被设置为0.9998。这意味着在更新EMA权重时,大约99.98%的权重来自之前的EMA权重,而剩下的0.02%来自当前的模型权重。由于衰减率非常接近1,EMA权重会更多地依赖于之前的EMA权重,而不是当前的模型权重。这有助于平滑模型权重的波动,并减少噪声对最终模型性能的影响。

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

  file_dir = 'checkpoints/MN4/'

这是存放MN4模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
    ])
    
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的模型输入是224×224的大小,所以要Resize为224×224。

 mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

定义了一个 Mixup 函数。Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE,num_workers=8, shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代,pin_memory设置为True,可以加快运行速度,num_workers多进程加载图像,不要超过CPU 的核数。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

	# 设置模型
    model_ft = mobilenetv4_conv_large()
    print(model_ft)
    num_freature = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_freature, classes)

    if resume:
        model = torch.load(resume)
        print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC = model['Best_ACC']
        start_epoch = model['epoch'] + 1
    model_ft.to(DEVICE)
    print(model_ft)
  • 设置模型为mobilenetv4_conv_large,获取分类模块的in_features,然后,修改为数据集的类别,也就是classes。
  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。
  • 如果模型输出是classes的长度,则表示修改正确了。

在这里插入图片描述

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None

定义训练和验证函数

训练函数


# 定义训练过程
def train(model, device, train_loader, optimizer, epoch, model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device, non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(models.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss = loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数


# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []

    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg, acc, acc5_meter.avg))

    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {

            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema'] = model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema'] = model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

MobileNetV4测试结果:

在这里插入图片描述

在这里插入图片描述

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

MobileNetV4_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/MN4/best.pth')
model.eval()
model.to(DEVICE)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 torch.load加载model,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/89069099

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1804413.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

了解Synchronized对象头?

1、对象头的结构 Java对象存储在内存中结构为&#xff1a; 对象头&#xff08;Header&#xff09;&#xff1a;实例数据&#xff08;Instance Data&#xff09;&#xff1a;定义类中的成员属性对齐填充字节&#xff08;Padding&#xff09;&#xff1a;由于HotSpot虚拟机的自…

高通SDX12:Voice Over USB 功能调试

一、功能概述及使用环境 Linux PC 作为上位机,内置 SLIC基于高通 SDX12 平台的设备作为从设备,通过USB连接到 Linux PC 上,在 PC 上枚举 UAC 设备从设备进行 MO/MT Call 时,上位机使用 arecord 进行录音,音频数据通过 USB 传至上位机,上位机停止录音后再使用 aplay 进行播…

经典文献阅读之--Online Monocular Lane Mapping(使用Catmull-Rom样条曲线完成在线单目车道建图)

0. 简介 对于单目摄像头完成SLAM建图这类操作&#xff0c;对于自动驾驶行业非常重要&#xff0c;《Online Monocular Lane Mapping Using Catmull-Rom Spline》介绍了一种仅依靠单个摄像头和里程计生成基于样条的在线单目车道建图方法。我们提出的技术将车道关联过程建模为一个…

【STM32】ucOS-III多任务程序

【STM32】uc/OS-III多任务程序 文章目录 【STM32】uc/OS-III多任务程序STM32F103C8T6移植uC/OS-III基于HAL库超完整详细过程与相关实验实验任务实验过程一、 uC/OS-III源码下载二、 建立STM32CubeMX工程三、 复制uC/OS-III文件到工程文件夹四、 添加工程组件和头文件路径五、修…

【中颖】SH79F9202 串口通信

头文件 uart.h #ifndef UART_H #define UART_H#include "SH79F9202.h" #include "LCD.h" #include "timer2.h" #include "timer5.h" #include "cpu.h" #include "key.h" #include "io.h" #include &qu…

【C++】深入理解decltype和decltype(auto)

深入理解decltype和decltype&#xff08;auto&#xff09; 一、decltype语法介绍二、decltype的推导规则1. expr不加括号2. expr加上括号 三、关于decltype的CV属性推导四、 decltype(auto) 的使用 一、decltype语法介绍 decltype关键字是C11新标准引入的关键字&#xff0c;它…

向量数据库是什么?

向量数据库是什么&#xff1f; 随着人工智能和机器学习技术的迅猛发展&#xff0c;向量数据库作为一种新型数据库引起了广泛关注。向量数据库专门用于存储和查询高维向量数据&#xff0c;是在大规模数据检索和相似性搜索领域的重要工具。 向量数据库的定义 向量数据库是一种…

心链13---主页切换功能 + loading特效 + 导航栏完善 + 队伍页接口修改

心链 — 伙伴匹配系统 直接取出所有用户&#xff0c;依次和当前用户计算分数&#xff0c;取 TOP N&#xff08;54 秒&#xff09; 优化方法&#xff1a; 切忌不要在数据量大的时候循环输出日志&#xff08;取消掉日志后 20 秒&#xff09;Map 存了所有的分数信息&#xff0c;占…

上位机图像处理和嵌入式模块部署(f407 mcu和其他mcu品类的选择)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 很多朋友读书的时候学的是stm32&#xff0c;工作中用的也是stm32。这本来问题不大&#xff0c;但是过去两三年的经历告诉我们&#xff0c;mcu的使用…

Polar Web【中等】反序列化

Polar Web【中等】反序列化 Contents Polar Web【中等】反序列化思路&探索EXPPHP生成PayloadGET传递参数 运行&总结 思路&探索 一个经典的反序列化问题&#xff0c;本文采用PHP代码辅助生成序列字符串的方式生成 Payload 来进行手动渗透。 打开站点&#xff0c;分析…

Python编程基础4

模块&#xff1a;模块支持从逻辑上组织Python代码&#xff0c;当代码量变得非常大的时候&#xff0c;最好把代码分成一些有组织的代码段。代码片段相互间有一定的联系&#xff0c;可能是一个包含数据成员和方法的类、函数、变量。 搜索路径&#xff1a;模块的导入需要一个叫做‘…

构建智能汽车新质生产力丨美格智能亮相2024高通汽车技术与合作峰会

近日&#xff0c;以“我们一起&#xff0c;驭风前行”为主题的2024高通汽车技术与合作峰会在无锡国际会议中心隆重举行。作为高通公司的战略合作伙伴&#xff0c;美格智能受邀全程参与此次汽车技术与合作峰会。在峰会现场&#xff0c;美格智能产品团队隆重展示了多款基于高通平…

Wireshark自定义Lua插件

背景&#xff1a; 常见的抓包工具有tcpdump和wireshark&#xff0c;二者可基于网卡进行抓包&#xff1a;tcpdump用于Linux环境抓包&#xff0c;而wireshark用于windows环境。抓包后需借助包分析工具对数据进行解析&#xff0c;将不可读的二进制数转换为可读的数据结构。 wires…

VUE封装-自定义权限控制指令

在实际开发中&#xff0c;会遇到很多的权限控制、资源位的场景&#xff0c;其实就是用来控制某个组件的展示与否&#xff0c;可以是一个按钮、一个报表、一个TAB页面等 例如下图&#xff0c;我想通过当前登录的用户控制谷歌的这个logo显示与否 因为设计到的权限、资源位控制比…

摆脱Jenkins - 使用google cloudbuild 部署 java service 到 compute engine VM

在之前 介绍 cloud build 的文章中 初探 Google 云原生的CICD - CloudBuild 已经介绍过&#xff0c; 用cloud build 去部署1个 spring boot service 到 cloud run 是很简单的&#xff0c; 因为部署cloud run 无非就是用gcloud 去部署1个 GAR 上的docker image 到cloud run 容…

GUI编程-01

组件 窗口 弹窗 面板 文本框 列表框 按钮 图片 监听事件 鼠标 键盘事件 破解工具 Java提供了丰富的图形用户界面&#xff08;Graphics User Interface&#xff0c;GUI&#xff09;的类库&#xff0c;基于这些类库可以编写窗口程序。 Java关于图形界面的类库主要放在…

【Redis学习笔记05】Jedis客户端(string、list、set)

Jedis客户端 1. 命令 1.1 String类型 1.1.1 常见命令 SET命令 语法&#xff1a;SET key value [EX seconds | PX milliseconds] [NX|XX] 说明&#xff1a;将string类型的value值设置到指定key中&#xff0c;如果之前该key存在&#xff0c;则会覆盖原先的值&#xff0c;原先…

数染色体 算法 python源码

效果图如下&#xff1a; 原图&#xff1a; 完整代码&#xff1a; import cv2 import numpy as np from skimage import measure import randomimage cv2.imread(113.jpg, cv2.IMREAD_GRAYSCALE)blurred_img cv2.GaussianBlur(image, (5, 5), 0)_, binary_image cv2.thresho…

LibreOffice电子表格如何实现快速筛选并将结果放到新的工作表

如果是在excel或者wps中&#xff0c;可能大家都习惯了自动筛选&#xff0c;然后复制到新的工作表或者删除掉复制内容的办法。但是在LibreOffice中&#xff0c;经测试&#xff0c;大数据表的删除或者复制是非常慢的。这也是很多人放弃LibreOffice的原因之一。那么我们如何快速筛…

Rust 实战丨SSE(Server-Sent Events)

&#x1f4cc; SSE&#xff08;Server-Sent Events&#xff09;是一种允许服务器向客户端浏览器推送信息的技术。它是 HTML5 的一部分&#xff0c;专门用于建立一个单向的从服务器到客户端的通信连接。SSE的使用场景非常广泛&#xff0c;包括实时消息推送、实时通知更新等。 S…