17、matlab实现均值滤波、中值滤波、Butterworth滤波和线性相位FIR滤波

news2025/1/12 6:18:19

1、创建信号

1)创建正余弦信号、噪声信号和混合信号

原始正余弦信号公式:Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t)

高斯分布的白噪声:NoiseGauss= [randn(1,2000)]

均匀分布的白噪声:[rand(1,2000)]

正余弦信号、噪声信号和混合信号代码:

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
subplot(5,1,1);
plot(Signal1);
title('正余弦信号');
subplot(5,1,2);
plot(NoiseGauss);
title('高斯噪声');
subplot(5,1,3);
plot(NoiseWhite);
title('白噪声');
subplot(5,1,4);
plot(NoiseSignal1);
title('混合高斯噪声信号');
subplot(5,1,5);
plot(NoiseSignal2);
title('混合白噪声信号');

试图效果:

2)创建方波信号、噪声及混合信号

原始方波信号公式:

Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),]

高斯分布的白噪声:NoiseGauss= [randn(1,2000)]

均匀分布的白噪声:[rand(1,2000)]

方波信号、噪声及混合信号代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
subplot(5,1,1);
plot(Signal2);
title('方波信号');
subplot(5,1,2);
plot(NoiseGauss);
title('高斯噪声');
subplot(5,1,3);
plot(NoiseWhite);
title('白噪声');
subplot(5,1,4);
plot(NSignal1);
title('方波混合高斯噪声信号');
subplot(5,1,5);
plot(NSignal2);
title('方波混合白噪声信号');

试图效果:

2、均值滤波filter()函数

语法:y = filter(b,a,x) 使用由分子和分母系数 b 和 a 定义的有理传递函数 对输入数据 x 进行滤波。

1)正余弦混合噪声信号均值滤波

代码:

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
b=[1 1 1 1 1 1]/6;
Signal_Filter1 = filter(b,1,NoiseSignal1);
Signal_Filter2 = filter(b,1,NoiseSignal2);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('均值滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('均值滤波后白噪声混合信号1');

 视图效果:竖直方向三幅图进行对比

 2)方波混合噪声信号均值滤波

 代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
b=[1 1 1 1 1 1]/6;
Signal_Filter3 = filter(b,1,NSignal1);
Signal_Filter4 = filter(b,1,NSignal2);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('均值滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('均值滤波后白噪声混合信号2');

视图效果:

 3、中值滤波:medfilt1()函数

语法:medfilt1(x,n)对x应用一个n阶一维中值滤波器


1)正余弦混合噪声信号中值滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
Signal_Filter1=medfilt1(NoiseSignal1,11);
Signal_Filter2=medfilt1(NoiseSignal2,11);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('中值滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('中值滤波后白噪声混合信号1');

视图效果

2)方波混合噪声信号中值滤波 

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
Signal_Filter3=medfilt1(NSignal1,11);
Signal_Filter4=medfilt1(NSignal2,11);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('中值滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('中值滤波后白噪声混合信号2');

视图效果

4、 Butterworth低通滤波:巴特沃斯滤波butter()函数

语法:[b,a] = butter(n,Wn) 返回归一化截止频率为 Wn 的 n 阶低通数字巴特沃斯滤波器的传递函数系数。

1)正余弦混合噪声信号Butterworth低通滤波
代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
Wc=2*250/Fs;%截止频率 50Hz
[b,a]=butter(4,Wc);%Butterworth滤波
Signal_Filter1=filter(b,a,NoiseSignal1);
Signal_Filter2=filter(b,a,NoiseSignal2);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('巴特沃斯低通滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('巴特沃斯低通滤波后白噪声混合信号1');

视图效果

 2)方波混合噪声信号Butterworth低通滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
Wc=2*250/Fs;%截止频率 50Hz
[b,a]=butter(4,Wc);%Butterworth滤波
Signal_Filter3=filter(b,a,NSignal1);
Signal_Filter4=filter(b,a,NSignal2);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('巴特沃斯低通滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('巴特沃斯低通滤波后白噪声混合信号2');

视图效果

4、线性相位FIR滤波:firls()函数

语法:firls(n,f,a):返回包含n阶FIR滤波器的n+1个系数的行向量b。所得滤波器的频率和幅度特性与向量f和a给出的特性相匹配。

 1)正余弦混合噪声信号线性相位FIR滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
F  =  0:0.05:0.95;%频率点对的向量
A  =  [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%与F的参数对应
b  =  firls(2,F,A);%20为阶次
Signal_Filter1 = filter(b,1,NoiseSignal1);
Signal_Filter2 = filter(b,1,NoiseSignal2);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('FIR滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('FIR滤波后白噪声混合信号1');

视图效果 

 2)方波混合噪声信号线性相位FIR滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
F  =  0:0.05:0.95;%频率点对的向量
A  =  [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%与F的参数对应
b  =  firls(2,F,A);%20为阶次
Signal_Filter3 = filter(b,1,NSignal1);
Signal_Filter4 = filter(b,1,NSignal2);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('FIR滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('FIR滤波后白噪声混合信号2');

视图效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1803301.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)HPA详细解释与案例应用

文章目录 前言HPA简介简单理解详细解释HPA 的工作原理监控系统负载模式HPA 的优势使用 HPA 的注意事项应用类型 应用环境1.metircs-server部署2.HPA演示示例(1)部署一个服务(2)创建HPA对象(3)执行压测 前言…

278 基于Matlab GUI的中重频PD雷达仿真系统

基于Matlab GUI的中重频PD雷达仿真系统。具有26页文档报告。仿真雷达信号的发射、传播、散射、接收、滤波、信号处理、数据处理的全部物理过程,因此应当实现对雷达发射机、天线、接收机、回波信号处理、数据处理的建模与仿真。程序已调通,可直接运行。 2…

自定义类型:结构体+结构体内存对齐+结构体实现位段

结构体内存对齐实现位段 一.结构体1.结构体的声明2.结构体变量成员访问操作符3.结构体传参4.匿名结构体5.结构的自引用 二.结构体内存对齐1.对齐规则2.为什么存在内存对齐?3.修改默认对齐数 三.结构体实现位段1.什么是位段2.位段的内存分配3.位段的跨平台问题4.位段…

使用Qt实现文本文件的读写操作

文章目录 文本读写简介QFileDialog简介常用方法示例代码 QFile简介常用方法示例代码 QTextStream简介常用方法示例代码 结合使用示例完整示例代码(读写操作,可直接复制运行我使用的Qt版本为QT5.14)mainwindow.hmainwindow.cppmain.cpp代码解释 文本读写简介 在现代…

编译原理-词法分析(实验 C语言)

编译原理-词法分析 1. 实验目的 设计、编写并调试一个词法分析程序,加深对词法分析原理的理解 2. 实验要求 2.1 待分析的简单语言的词法 关键字:begin,if,then,while,do,end 所有关键字都是…

uc_os操作练习

目录 一、CubeMX配置 二、获取uc-os源码 三、代码移植 四、代码修改 五、总结 六、参考资料 一、CubeMX配置 首先进入CubeMX,,新建工程,选择STM32F103C8T6芯片,照例配置好RCC和SYS。 然后配置GPIO输出,这里选择P…

HarmonyOS(二十三)——HTTP请求实战一个可切换的头条列表

在前一篇文章,我们已经知道如何实现一个http请求的完整流程,今天就用官方列子实战一个简单的新闻列表。进一步掌握ArkTS的声明式开发范式,数据请求,常用系统组件以及touch事件的使用。 主要包含以下功能: 数据请求。…

matplotlib 动态显示梯度下降过程

文章目录 简介曲线下降曲面下降 简介 梯度下降是一种优化算法,常用于寻找函数的最小值或最大值。它通过迭代更新参数的方式逐步减小(或增大)目标函数的值,直到达到某个停止条件为止。梯度下降的基本思想是沿着目标函数的负梯度方…

BeagleBone Black入门总结

文章目录 参考连接重要路径系统镜像下载访问 BeagleBone 参考连接 镜像下载启动系统制作:SD卡烧录工具入门书籍推荐:BeagleBone cookbookBeagleBone概况? 重要路径 官方例程及脚本路径:/var/lib/cloud9 系统镜像下载 疑问&am…

电子设计教学新篇章:SmartEDA引领学校教学升级风潮

在数字化时代的浪潮中,电子设计教学领域正迎来一场革命性的变革。SmartEDA,作为电子设计课程的新宠,以其高效、智能的特性,正成为学校教学升级的重要推手。它不仅极大地提升了电子设计的效率,还为学生们带来了更为深入…

TOGAF数字化转型的关键(文尾附在线TOGAF免费测试)

业务架构驱动数据架构和应用架构的设计,而应用架构又依赖于数据架构和技术架构的支持。技术架构则为整个架构提供了稳定的基础设施。 在数字化转型中,协调和整合这四种架构是至关重要的。通过确保它们之间的一致性和协同工作,可以实现企业业务…

使用OpenPCDet训练与测试Transformer模型:如何加载自己的数据集

引言 Transformer架构因其强大的序列处理能力和长距离依赖捕捉能力,在自然语言处理领域取得了巨大成功。近年来,这一架构也被引入3D物体检测领域,如Voxel Transformer等,显著提升了模型在复杂场景下的检测性能。OpenPCDet整合了多…

K8s速览

k8s的核心能力 ● 服务发现与负载均衡 ● 服务恢复 ● 服务伸缩 ● 自动发布与回滚 ● 批量执行 架构 server-client两层架构,Master作为中央管控节点,会和每一个Node进行一个连接; 所有UI层,client的操作,只会和Mat…

英伟达Docker 安装与GPu镜像拉取

获取nvidia_docker压缩包nvidia_docker.tgz将压缩包上传至服务器指定目录解压nvidia_docker.tgz压缩包 tar -zxvf 压缩包执行rpm安装命令: #查看指定rpm包安装情况 rpm -qa | grep libstdc #查看指定rpm包下的依赖包的版本情况 strings /lib64/libstdc |grep GLI…

酒店旅游API服务汇总

各大旅游平台常用API服务汇总: 实时房源服务【Airbnb】飞猪旅行开放服务途牛旅行开放平台API华为云数字差旅【差旅管理】动态信息接口【美团酒店】旅行商城商家管理API【马蜂窝】交易流程接口【美团酒店】电子导游【携程旅行】

STM32编程:实现LED灯闪烁(基于手写SDK的方式)

项目结构 stm32f10x.h 文件 //寄存器的值常常是芯片外设自动更改的,即使CPU没有执行程序,也有可能发生变化 //编译器有可能会对没有执行程序的变量进行优化//volatile表示易变的变量,防止编译器优化, #define __IO volati…

CSAPP Lab02——Bomb Lab完成思路详解

看见的看不见的 瞬间的永恒的 青草长啊大雪飘扬 ——月亮之上 完整代码见:CSAPP/bomb at main SnowLegend-star/CSAPP (github.com) 01 字符串比较 简单的把输入的字符串和地址“0x402400”内早已存储的字符串相比较。如果两个字符串相等则函数返回,否…

SpringBoot+Vue甘肃非物质文化网站(前后端分离)

技术栈 JavaSpringBootMavenMySQLMyBatisVueShiroElement-UI 系统角色对应功能 用户管理员 系统功能截图

SpringBoot Elasticsearch07-以黑马商场为例-黑马程序员学习笔记

06篇已经导入了大量数据到elasticsearch中,实现了商品数据的存储。不过查询商品数据时依然采用的是根据id查询,而非模糊搜索。 接下来研究下elasticsearch的数据搜索功能。Elasticsearch提供了基于JSON的DSL(Domain Specific Language&#…

2024年06月数据库流行度最新排名

点击查看最新数据库流行度最新排名(每月更新) 2024年06月数据库流行度最新排名 TOP DB顶级数据库索引是通过分析在谷歌上搜索数据库名称的频率来创建的 一个数据库被搜索的次数越多,这个数据库就被认为越受欢迎。这是一个领先指标。原始数…