自定义类型:结构体+结构体内存对齐+结构体实现位段

news2025/1/12 6:16:21

结构体+内存对齐+实现位段

  • 一.结构体
    • 1.结构体的声明
    • 2.结构体变量成员访问操作符
    • 3.结构体传参
    • 4.匿名结构体
    • 5.结构的自引用
  • 二.结构体内存对齐
    • 1.对齐规则
    • 2.为什么存在内存对齐?
    • 3.修改默认对齐数
  • 三.结构体实现位段
    • 1.什么是位段
    • 2.位段的内存分配
    • 3.位段的跨平台问题
    • 4.位段的应用
    • 5.位段使用的注意事项

前言:

  1. 学习了数组后发现数组中的元素只能是相同类型的变量,那么有没有可以存放不同类型的变量呢?
  2. 结构体:一些值的集合,这些值称为成员变量,结构体的每个成员可以是不同类型的变量

一.结构体

1.结构体的声明

struct tag
{
	member-list;//结构体成员列表
}variable-list;//结构体变量列表

例如:描述一个人

struct Person {
    int age;//年龄
    char name[50];//姓名
    float height;//身高
};//封号不能丢

2.结构体变量成员访问操作符

  1. 结构体变量.结构体成员名。
  2. 结构体指针变量->结构体成员名。
#include <stdio.h>
struct Person
{
    int age;
    char name[50];
    float height;
}p1 = { 20,"zhangsan",185.5 }, * ps;//全局变量(*ps:结构体指针ps)

int main()
{
    struct Person p2 = { 18,"lisi",173.2 };//局部变量
    struct Person p3 = { 19,"wangwu",180.8 };//局部变量
    ps = &p3;
    printf("%d %s %.1f\n", p1.age, p1.name, p1.height);//结构体成员访问操作符:.
    printf("%d %s %.1f\n", p2.age, p2.name, p2.height);

    printf("%d %s %.1f\n", (*ps).age, (*ps).name, (*ps).height);
    printf("%d %s %.1f\n", ps->age, ps->name, ps->height);//结构体成员访问操作符:->等价于先*再.
    return 0;
}

在这里插入图片描述

3.结构体传参

  1. 传结构体。
  2. 传结构体的地址。
#include <stdio.h>
struct Person
{
    int age;
    char name[50];
    float height;
};
void test1(struct Person p)//用结构体接收
{
    printf("%d %s %.1f\n", p.age, p.name, p.height);
}
void test2(struct Person* p)//用结构体指针接收
{
    printf("%d %s %.1f\n", p->age, p->name, p->height);
}
int main()
{
    struct Person p1 = { 20,"zhangsan",185.5 };
    test1(p1);//传结构体
    test2(&p1);//传结构体的地址
    return 0;
}

在这里插入图片描述

思考:我们发现二者都可以成功访问结构体成员,那二者有什么区别呢?

  1. 传递结构体时:其实函数内部创建了一个临时结构体变量存放传入的结构体,当结构体很大时会额外占用空间不划算。(本质上是值传递)。
  2. 传递结构体地址时:只需创建4个字节结构体指针变量,通过其来访问结构体成员,可以大大节省空间。(本质上是地址/指针传递)。
  3. 推荐传递结构体地址

在这里插入图片描述

4.匿名结构体

//匿名结构体类型 
struct//不完全声明,由于没有名字,无法在其之后创建变量
{
    int age;
    char name[50];
    float height;
}s1, s2;//在结构体声明的时候直接创建变量,不能在其之后创建变量了,只能使用一次
int main()
{
	struct s3;//error
}
  • 当只需使用一次可以使用(在声明结构体时,直接创建变量,不能在其之后创建变量了)。

思考:以下代码行不行

struct
{
    int age;
    char name[50];
    float height;
}s1;
struct
{
    int age;
    char name[50];
    float height;
}*ps;

int main()
{	
    ps = &s1;//?
	return 0;
}
  • 答案:不行,看似一样,其实这两个结构体是不同类型的,只是成员变量相同的不同结构体类型,二者不兼容。(没有名字导致的问题)。

5.结构的自引用

比如:定义一个链表的节点

struct Node
{
 	int data;//存放数据
 	struct Node* next;//存放指针
};

二.结构体内存对齐

注意:面试时计算结构体的大小是一个热门的考点,一定要学会。

1.对齐规则

  1. 结构体的第一个成员对齐到和结构体变量起始位置偏移量为 0 的地址处。
    偏移量:该成员变量的地址距离结构体地址的字节数(计算偏移量的函数:offsetof)。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的对齐数与该成员变量大小的较小值。
    在VS 中默认的对齐数值为 8 。
    Linux中gcc编译器没有默认对齐数,对齐数就是成员自身的大小。
  3. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

offsetof宏:计算结构体成员相较于结构体变量起始位置的偏移量,头文件stddef.h
在这里插入图片描述

例如:计算结构体大小的代码。

#include<stdio.h>
#include<stddef.h>
struct S1
{
    char c1;//自身大小1,默认对齐数8,对齐数1
    char c2;//自身大小1,默认对齐数8,对齐数1
    int n;//自身大小4,默认对齐数8,对齐数4
};
struct S2
{
    char c1;//自身大小1,默认对齐数8,对齐数1
    int n;//自身大小4,默认对齐数8,对齐数4
    char c2;//自身大小1,默认对齐数8,对齐数1
};
int main()
{
    printf("%zd\n", offsetof(struct S1, c1));//0
    printf("%zd\n", offsetof(struct S1, c2));//1
    printf("%zd\n", offsetof(struct S1, n));//4
    printf("%zd\n", sizeof(struct S1));//8

    printf("%zd\n", offsetof(struct S2, c1));//0
    printf("%zd\n", offsetof(struct S2, n));//4
    printf("%zd\n", offsetof(struct S2, c2));//8
    printf("%zd\n", sizeof(struct S2));//12
    return 0;
}

在这里插入图片描述

练习:

#include<stdio.h>
struct S1
{
    double d;//自身大小8,默认对齐数8,对齐数8
    char c;//自身大小1,默认对齐数8,对齐数1
    int i;//自身大小4,默认对齐数8,对齐数4
};
struct S2
{
    char c1;//自身大小1,默认对齐数8,对齐数1
    struct S1 s1;//自身大小16,默认对齐数8,对齐数8
    //如果嵌套了结构体的情况,嵌套的结构体成员对齐到《自己的成员中最大对齐数的整数倍处(d的对齐数的整数倍处)》,
    //结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。
    double d;//自身大小8,默认对齐数8,对齐数8
};
int main()
{
    printf("%zd\n", sizeof(struct S1));//16
    printf("%zd\n", sizeof(struct S2));//32
    return 0;
}

在这里插入图片描述

2.为什么存在内存对齐?

在这里插入图片描述

在这里插入图片描述

  • 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
//例如: 
#include<stdio.h>
struct S1
{
	char c1;
	int i;
	char c2;
};
struct S2
{
	char c1;
	char c2;
	int i;
};
int main()
{
	printf("%zd\n", sizeof(struct S1));//12
	printf("%zd\n", sizeof(struct S2));//8
	//S1 和 S2 类型的成员⼀模⼀样,但是 S1 和 S2 所占空间的大小有了⼀些区别。
	return 0;
}

总结:让占用空间小的成员尽量集中在⼀起。

3.修改默认对齐数

  1. VS上默认对齐数为8。
  2. #pragma pack(一般为2^n) 这个预处理指令,可以改变编译器的默认对齐数。
  3. 例如#pragma pack(1),#pragma pack(2),#pragma pack(4)。
  4. #pragma pack() == #pragma pack(8)。
#include<stdio.h>
#pragma pack(1)//修改默认对齐数变成1
struct S
{
	char c1;//自身大小1,默认对齐数1,对齐数1
	int i;//自身大小4,默认对齐数1,对齐数1
	char c2;//自身大小1,默认对齐数1,对齐数1
};
#pragma pack()//将默认对齐数修改为8
int main()
{
	printf("%zd\n", sizeof(struct S));//6
	return 0;
}

三.结构体实现位段

  • 结构体有实现位段的功能。

1.什么是位段

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或 signed int ,在C99中位段成员的类型也可以选择其他类型。
  2. 位段的成员名后边有一个冒号和一个数字。
  3. 位段中的位:二进制的位。

位段与结构体语法上的区别,代码如下:

#include<stdio.h>
struct A//结构体
{
	int a;
	int b;
	int c;
	int d;
};
struct B//结构体实现位段
{
	int a : 2;//只给了两个比特位,意味着只能存放0,1,2,3,不能存放大于它们的值
	int b : 5;//同理
	int c : 10;
	int d : 30;
};
int main()
{
	printf("%zd\n", sizeof(struct A));//16个字节
	printf("%zd\n", sizeof(struct B));//8个字节
	//发现位段较于结构体节省了空间
	return 0;
}
  • 总结:位段相较于结构体节省了空间。

2.位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型。
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
#include<stdio.h>
struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
int main()
{
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	printf("%zd\n", sizeof(struct S));//3个字节
	return 0;
}

1.给定了空间后,在空间的内部是从左向右使用,还是从右向左使用,这个是不确定的。
 假设:从右向左使用。
2.当剩下的空间不足以存放下一个成员的时候,空间是浪费还是使用,这个是不确定的。
 假设:浪费。

在这里插入图片描述

在这里插入图片描述

3.位段的跨平台问题

  1. int位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16(sizeof(int)==2),32位机器最大32(sizeof(int)==4),写成27,在16位机器会出问题)。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:跟结构体相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

4.位段的应用

  • 下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。
    在这里插入图片描述
  1. 在网络中发送数据的时候,需要进行数据的封装,例如:加上源地址与目的地址。(计算机网络中的网络层协议——> IP协议)。
  2. 为了避免网络拥堵,相办法节省空间,使用的就是位段。

5.位段使用的注意事项

  1. 位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
  2. 所以不能对位段的成员使用&操作符,这样就不能使用 scanf 直接给位段的成员输⼊值,只能是先输⼊放在一个变量中,然后赋值给位段的成员。
#include<stdio.h>
struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	//这是错误的
	struct A sa = { 0 };
	scanf("%d", &sa._b); 

	//正确的示范
	int b = 0;
	scanf("%d", &b);
	sa._b = b;
	return 0;
}

创作不易,如果能帮到你的话能赏个三连吗?感谢啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1803296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Qt实现文本文件的读写操作

文章目录 文本读写简介QFileDialog简介常用方法示例代码 QFile简介常用方法示例代码 QTextStream简介常用方法示例代码 结合使用示例完整示例代码(读写操作&#xff0c;可直接复制运行我使用的Qt版本为QT5.14)mainwindow.hmainwindow.cppmain.cpp代码解释 文本读写简介 在现代…

编译原理-词法分析(实验 C语言)

编译原理-词法分析 1. 实验目的 设计、编写并调试一个词法分析程序&#xff0c;加深对词法分析原理的理解 2. 实验要求 2.1 待分析的简单语言的词法 关键字&#xff1a;begin&#xff0c;if&#xff0c;then&#xff0c;while&#xff0c;do&#xff0c;end 所有关键字都是…

uc_os操作练习

目录 一、CubeMX配置 二、获取uc-os源码 三、代码移植 四、代码修改 五、总结 六、参考资料 一、CubeMX配置 首先进入CubeMX&#xff0c;&#xff0c;新建工程&#xff0c;选择STM32F103C8T6芯片&#xff0c;照例配置好RCC和SYS。 然后配置GPIO输出&#xff0c;这里选择P…

HarmonyOS(二十三)——HTTP请求实战一个可切换的头条列表

在前一篇文章&#xff0c;我们已经知道如何实现一个http请求的完整流程&#xff0c;今天就用官方列子实战一个简单的新闻列表。进一步掌握ArkTS的声明式开发范式&#xff0c;数据请求&#xff0c;常用系统组件以及touch事件的使用。 主要包含以下功能&#xff1a; 数据请求。…

matplotlib 动态显示梯度下降过程

文章目录 简介曲线下降曲面下降 简介 梯度下降是一种优化算法&#xff0c;常用于寻找函数的最小值或最大值。它通过迭代更新参数的方式逐步减小&#xff08;或增大&#xff09;目标函数的值&#xff0c;直到达到某个停止条件为止。梯度下降的基本思想是沿着目标函数的负梯度方…

BeagleBone Black入门总结

文章目录 参考连接重要路径系统镜像下载访问 BeagleBone 参考连接 镜像下载启动系统制作&#xff1a;SD卡烧录工具入门书籍推荐&#xff1a;BeagleBone cookbookBeagleBone概况&#xff1f; 重要路径 官方例程及脚本路径&#xff1a;/var/lib/cloud9 系统镜像下载 疑问&am…

电子设计教学新篇章:SmartEDA引领学校教学升级风潮

在数字化时代的浪潮中&#xff0c;电子设计教学领域正迎来一场革命性的变革。SmartEDA&#xff0c;作为电子设计课程的新宠&#xff0c;以其高效、智能的特性&#xff0c;正成为学校教学升级的重要推手。它不仅极大地提升了电子设计的效率&#xff0c;还为学生们带来了更为深入…

TOGAF数字化转型的关键(文尾附在线TOGAF免费测试)

业务架构驱动数据架构和应用架构的设计&#xff0c;而应用架构又依赖于数据架构和技术架构的支持。技术架构则为整个架构提供了稳定的基础设施。 在数字化转型中&#xff0c;协调和整合这四种架构是至关重要的。通过确保它们之间的一致性和协同工作&#xff0c;可以实现企业业务…

使用OpenPCDet训练与测试Transformer模型:如何加载自己的数据集

引言 Transformer架构因其强大的序列处理能力和长距离依赖捕捉能力&#xff0c;在自然语言处理领域取得了巨大成功。近年来&#xff0c;这一架构也被引入3D物体检测领域&#xff0c;如Voxel Transformer等&#xff0c;显著提升了模型在复杂场景下的检测性能。OpenPCDet整合了多…

K8s速览

k8s的核心能力 ● 服务发现与负载均衡 ● 服务恢复 ● 服务伸缩 ● 自动发布与回滚 ● 批量执行 架构 server-client两层架构&#xff0c;Master作为中央管控节点&#xff0c;会和每一个Node进行一个连接&#xff1b; 所有UI层&#xff0c;client的操作&#xff0c;只会和Mat…

英伟达Docker 安装与GPu镜像拉取

获取nvidia_docker压缩包nvidia_docker.tgz将压缩包上传至服务器指定目录解压nvidia_docker.tgz压缩包 tar -zxvf 压缩包执行rpm安装命令&#xff1a; #查看指定rpm包安装情况 rpm -qa | grep libstdc #查看指定rpm包下的依赖包的版本情况 strings /lib64/libstdc |grep GLI…

酒店旅游API服务汇总

各大旅游平台常用API服务汇总&#xff1a; 实时房源服务【Airbnb】飞猪旅行开放服务途牛旅行开放平台API华为云数字差旅【差旅管理】动态信息接口【美团酒店】旅行商城商家管理API【马蜂窝】交易流程接口【美团酒店】电子导游【携程旅行】

STM32编程:实现LED灯闪烁(基于手写SDK的方式)

项目结构 stm32f10x.h 文件 //寄存器的值常常是芯片外设自动更改的&#xff0c;即使CPU没有执行程序&#xff0c;也有可能发生变化 //编译器有可能会对没有执行程序的变量进行优化//volatile表示易变的变量&#xff0c;防止编译器优化&#xff0c; #define __IO volati…

CSAPP Lab02——Bomb Lab完成思路详解

看见的看不见的 瞬间的永恒的 青草长啊大雪飘扬 ——月亮之上 完整代码见&#xff1a;CSAPP/bomb at main SnowLegend-star/CSAPP (github.com) 01 字符串比较 简单的把输入的字符串和地址“0x402400”内早已存储的字符串相比较。如果两个字符串相等则函数返回&#xff0c;否…

SpringBoot+Vue甘肃非物质文化网站(前后端分离)

技术栈 JavaSpringBootMavenMySQLMyBatisVueShiroElement-UI 系统角色对应功能 用户管理员 系统功能截图

SpringBoot Elasticsearch07-以黑马商场为例-黑马程序员学习笔记

06篇已经导入了大量数据到elasticsearch中&#xff0c;实现了商品数据的存储。不过查询商品数据时依然采用的是根据id查询&#xff0c;而非模糊搜索。 接下来研究下elasticsearch的数据搜索功能。Elasticsearch提供了基于JSON的DSL&#xff08;Domain Specific Language&#…

2024年06月数据库流行度最新排名

点击查看最新数据库流行度最新排名&#xff08;每月更新&#xff09; 2024年06月数据库流行度最新排名 TOP DB顶级数据库索引是通过分析在谷歌上搜索数据库名称的频率来创建的 一个数据库被搜索的次数越多&#xff0c;这个数据库就被认为越受欢迎。这是一个领先指标。原始数…

09-数组的含义以及零长数组变长数组与多维数组

09-数组的含义以及零长数组变长数组与多维数组 文章目录 09-数组的含义以及零长数组变长数组与多维数组一、数组名的含义1.1 表示整个数组的首地址1.2 表示整个数组首元素的首地址 二、数组下标字符串常量 三、零长数组3.1 示例 四、变长数组4.1 示例 五、多维数组5.1 定义与初…

UML实现图-部署图

概述 部署图(Deployent Diagram)描述了运行软件的系统中硬件和软件的物理结构。部署图中通常包含两种元素:节点和关联关系&#xff0c;部署图中每个配置必须存在于某些节点上。部署图也可以包含包或子系统。 节点是在运行时代表计算机资源的物理元素。节点名称有两种:简单名和…

APP开发技术的变迁史

随着移动互联网的迅猛发展&#xff0c;APP&#xff08;应用程序&#xff09;已经成为人们日常生活中不可或缺的一部分。从最初的简单工具到如今的智能平台&#xff0c;APP开发技术在这十年间经历了翻天覆地的变化。本文将从多个维度探讨近十年来APP开发技术的变迁史&#xff0c…