数仓开发:如何计算投放效果?

news2025/1/15 12:00:20

背景介绍

业务介绍:用户是通过低价引流进来,然后通过复购购买高价商品,可以多次购买。低价商品和高价商品均可以退款,高价商品由于各种复杂的场景,可能会有多次退款。低价商品如果退款是全退,不存在多次退款。
业务需求:计算低价引流的流量后续的产出,复购的期限是在 30天内,退款的期限也是按 30天(退款时间-复购时间),最终交付一个按引流订单维度。

架构设计

由于引流订单和复购订单的性质不同,在数仓贴源层处理的过程中,已经将二者分离独立成表,此处是在贴源层的基础上加以处理。
将引流订单记录、复购订单记录和退款订单记录以引流订单为主表整合到一起,输出不加业务逻辑的事实表:订单链路数据表。在此基础上,再根据不同的业务逻辑处理为不同聚合表单。

数据开发

说明:为方便测试,以下使用的是 MySQL 语法,实际开发使用的是阿里云的 MaxCompute SQL,本代码的差异点在于日期函数date_add(),在 MaxCompute SQL 中,语法有一定差异,后者是date_add(<date_col_name>, 30),如果时间字段包含日期和时间,则要使用dateadd(<datetime_col_name>,30,'dd')

订单链路数据表好处理,把三个表根据用户信息进行 JOIN 即可,伪代码参考如下:

select *
from <引流订单记录>
left join <复购订单记录> on <用户信息>
left join <退款订单记录> on <用户信息>

有了订单链路数据表,接下来按 30天的复购和30天的退款期限聚合为引流订单产出表。
抽象出一个表单,数据记录如下,有 10 个字段

  • low_price_order_id:低价订单号
  • low_price_paid_time:低价订单付款时间
  • low_price_paid_amount:低价订单付款金额
  • low_price_refund_time:低价订单退款时间
  • low_price_refund_amount:低价订单退款金额
  • high_price_order_id:高价订单号
  • high_price_paid_time:高价订单付款时间
  • high_price_paid_amount:高价订单付款金额
  • high_price_refund_time:高价订单退款时间
  • high_price_refund_amount:高价订单退款金额

with user_orders as(
-- 只有低价订单
select '10001' as "low_price_order_id",'2024-01-01' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,null as "high_price_order_id",null as "high_price_paid_time",0 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all
-- 只有低价订单,且退款
select '10002' as "low_price_order_id",'2024-01-01' as "low_price_paid_time",1.0 as "low_price_paid_amount",'2024-01-02' as "low_price_refund_time",1.0 as "low_price_refund_amount"
   ,null as "high_price_order_id",null as "high_price_paid_time",0 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all
-- 低价订单+一个高价订单
select '10003' as "low_price_order_id",'2024-01-01' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20001' as "high_price_order_id",'2024-01-01' as "high_price_paid_time",1000 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all
-- 低价订单+2个高价订单
select '10004' as "low_price_order_id",'2024-01-01' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20002' as "high_price_order_id",'2024-01-02' as "high_price_paid_time",2000 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all

select '10004' as "low_price_order_id",'2024-01-02' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20004' as "high_price_order_id",'2024-01-05' as "high_price_paid_time",1000 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all
-- 低价订单+1个30天内高价订单+1个30天外高价订单
select '10005' as "low_price_order_id",'2024-01-02' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20003' as "high_price_order_id",'2024-01-02' as "high_price_paid_time",2000 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all

select '10005' as "low_price_order_id",'2024-01-02' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20010' as "high_price_order_id",'2024-02-04' as "high_price_paid_time",1500 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all

-- 低价订单+一个高价订单且一个退款
select '10006' as "low_price_order_id",'2024-01-02' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20005' as "high_price_order_id",'2024-01-03' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-01-05' as "high_price_refund_time",2000 as "high_price_refund_amount"
union all
-- 低价订单+一个高价订单且2个退款
select '10007' as "low_price_order_id",'2024-01-02' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20006' as "high_price_order_id",'2024-01-03' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-01-03' as "high_price_refund_time",1000 as "high_price_refund_amount"
union all

select '10007' as "low_price_order_id",'2024-01-02' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20006' as "high_price_order_id",'2024-01-03' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-01-04' as "high_price_refund_time",1000 as "high_price_refund_amount"
union all
-- 低价订单+一个高价订单且1个30天内退款1个30天外退款
select '10008' as "low_price_order_id",'2024-01-03' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20007' as "high_price_order_id",'2024-01-03' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-01-05' as "high_price_refund_time",100 as "high_price_refund_amount"
union all

select '10008' as "low_price_order_id",'2024-01-03' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20007' as "high_price_order_id",'2024-01-03' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-02-05' as "high_price_refund_time",1900 as "high_price_refund_amount"
union all
-- 低价订单+1个30天内高价订单—+1个30天外高价订单且该单有30天内退款和30天外退款
select '10009' as "low_price_order_id",'2024-01-03' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20008' as "high_price_order_id",'2024-01-03' as "high_price_paid_time",1500 as "high_price_paid_amount",null as "high_price_refund_time",0 as "high_price_refund_amount"
union all

select '10009' as "low_price_order_id",'2024-01-03' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20009' as "high_price_order_id",'2024-02-04' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-02-05' as "high_price_refund_time",100 as "high_price_refund_amount"
union all

select '10009' as "low_price_order_id",'2024-01-03' as "low_price_paid_time",1.0 as "low_price_paid_amount",null as "low_price_refund_time",0 as "low_price_refund_amount"
   ,'20009' as "high_price_order_id",'2024-02-04' as "high_price_paid_time",2000 as "high_price_paid_amount",'2024-03-06' as "high_price_refund_time",1900 as "high_price_refund_amount"
)
select *
from user_orders;

数据参考如下:

  • 部分只有低价订单,可能有退款,退款可能是 30天内,可能是 30天外;
  • 部分有高价订单,高价订单可能是 30天内,可能是 30天外;
  • 部分有多笔高价订单,每笔可能是 30天内,可能是 30天外;
  • 部分高价订单有退款,退款可能是 30天内,可能是 30天外;
  • 部分高价订单有多笔退款,每笔退款可能是 30天内,可能是 30天外。

image.png

目标表字段记录如下:

  • low_price_order_id:低价订单号
  • low_price_paid_time:低价订单付款时间
  • low_price_paid_amount:低价订单付款金额
  • low_price_refund_amount:30天内低价订单退款金额
  • high_price_paid_amount:30天内高价订单付款金额
  • high_price_refund_amount:30天内高价订单退款金额

接下来开始聚合目标表。
保留低价订单唯一记录,那就直接按照低价订单聚合?
逻辑上没问题,直接聚合试试。

不加日期限制时,结构如下:

select uos.low_price_order_id,uos.low_price_paid_time,uos.low_price_paid_amount
  ,sum(uos.low_price_refund_amount)
  ,sum(uos.high_price_paid_amount)
  ,sum(uos.high_price_refund_amount)
from user_orders uos
group by uos.low_price_order_id,uos.low_price_paid_time,uos.low_price_paid_amount

按 30 天周期限制,对每个聚合字段进行界限判断:

select uos.low_price_order_id,uos.low_price_paid_time,uos.low_price_paid_amount
  ,sum(case when uos.low_price_refund_time<=date_add(uos.low_price_paid_time,interval 30 day) then uos.low_price_refund_amount else 0 end)     low_price_refund_amount
  ,sum(case when uos.high_price_paid_time<=date_add(uos.low_price_paid_time,interval 30 day) then uos.high_price_paid_amount else 0 end)       high_price_paid_amount
  ,sum(case when uos.high_price_paid_time<=date_add(uos.low_price_paid_time,interval 30 day) and uos.high_price_refund_time<=date_add(uos.high_price_paid_time,interval 30 day) then uos.high_price_refund_amount else 0 end)  high_price_refund_amount
from user_orders uos
group by uos.low_price_order_id,uos.low_price_paid_time,uos.low_price_paid_amount

查看结果,显然不行!当高价订单有多笔退款时,数据发散了,直接聚合时,会出现翻倍的异常。
image.png

既然高价订单发散了,为了保证唯一记录,需要分两段聚合,先按低价订单和高价订单聚合退款数据,然后再按低价订单聚合高价订单金额和退款金额,数据流转参考如下。
image.png

不加时间限制时,参考如下:

select uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time
    ,sum(uos.low_price_refund_amount)  low_price_refund_amount
    ,sum(uos.high_price_paid_amount)   high_price_paid_amount
    ,sum(uos.high_price_refund_amount) high_price_refund_amount
from(
    select uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time,uos.low_price_refund_amount,uos.low_price_refund_time
        ,uos.high_price_order_id,uos.high_price_paid_time,uos.high_price_paid_amount
        ,sum(uos.high_price_refund_amount) high_price_refund_amount
    from user_orders uos
    group by uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time,uos.low_price_refund_amount,uos.low_price_refund_time
      ,uos.high_price_order_id,uos.high_price_paid_time,uos.high_price_paid_amount
)uos
group by uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time

接下来加上限制。
先按低价订单和高价订单聚合退款数据,把高价订单的退款时间减去高价订单的付款时间在30天内的退款金额聚合。
然后再按低价订单,把高价订单的付款时间减去低价订单的付款时间在 30天内的高价订单的付款金额和高价订单的退款金额聚合,同时把低价订单的退款时间减去低价订单的付款时间在 30天内的低价订单的付款金额聚合,得到最终的目标表。

select uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time
    ,sum(case when uos.low_price_refund_time<=date_add(uos.low_price_paid_time,interval 30 day) then uos.low_price_refund_amount else 0 end)     low_price_refund_amount
    ,sum(case when uos.high_price_paid_time<=date_add(uos.low_price_paid_time,interval 30 day) then uos.high_price_paid_amount else 0 end)       high_price_paid_amount
    ,sum(case when uos.high_price_paid_time<=date_add(uos.low_price_paid_time,interval 30 day) then uos.high_price_refund_amount else 0 end)     high_price_refund_amount
from(
    select uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time,uos.low_price_refund_amount,uos.low_price_refund_time
        ,uos.high_price_order_id,uos.high_price_paid_time,uos.high_price_paid_amount
        ,sum(case when uos.high_price_refund_time<=date_add(uos.high_price_paid_time,interval 30 day) then uos.high_price_refund_amount else 0 end)  high_price_refund_amount
    from user_orders uos
    group by uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time,uos.low_price_refund_amount,uos.low_price_refund_time
      ,uos.high_price_order_id,uos.high_price_paid_time,uos.high_price_paid_amount
)uos
group by uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time

结果如下,符合需求的预期。
image.png

可视化

说明:实际业务表单还有很多其他的维度,此处仅抽象出时间维度。

有了目标表,便可以根据目标表按时间维度聚合每月、每周、每天的营收金额、退款率等数据指标。
由于案例数据较少,此处做一个按天查看营收金额和退款率的折线图,看看二者的关系走势。

  • 营收金额:低价订单付款金额-低价订单退款金额+高价订单付款金额-高价订单付款金额
  • 退款率:高价订单退款金额>0 的数量/总低价订单数,一个低价订单可以视为是一个用户,按用户数计算退款率。
select low_price_paid_time,sum(low_price_paid_amount-low_price_refund_amount+high_price_paid_amount-high_price_refund_amount) 营收金额,sum(if(high_price_refund_amount>0,1,0))/count(*) 退款率
from <引流订单产出表>
group by low_price_paid_time
order by low_price_paid_time

image.png

小结

本文介绍了怎么实现以引流的低价订单的为基本维度,按照业务 30天的间隔分别聚合低价订单退款、高价订单金额和高价订单退款金额。

采用了两层表单的设计,一层事实表,一层根据业务不同的口径进行聚合。

处理业务逻辑的时候,根据事实表的结构,采用分段聚合的逻辑先聚合【低价订单+高价订单】,然后再根据【低价订单】进行聚合,最终得到目标表。

目标表开发好之后,在该表的基础上,根据各类业务指标进行聚合并可视化,最终提交给业务方使用。

附录

附上 MaxCompute SQL 处理逻辑,此案例,将 date_add()语法修改即可。

select uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time
    ,sum(case when uos.low_price_refund_time<=date_add(uos.low_price_paid_time,30) then uos.low_price_refund_amount else 0 end)     low_price_refund_amount
    ,sum(case when uos.high_price_paid_time<=date_add(uos.low_price_paid_time,30) then uos.high_price_paid_amount else 0 end)       high_price_paid_amount
    ,sum(case when uos.high_price_paid_time<=date_add(uos.low_price_paid_time,30) then uos.high_price_refund_amount else 0 end)     high_price_refund_amount
from(
    select uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time,uos.low_price_refund_amount,uos.low_price_refund_time
        ,uos.high_price_order_id,uos.high_price_paid_time,uos.high_price_paid_amount
        ,sum(case when uos.high_price_refund_time<=date_add(uos.high_price_paid_time,30) then uos.high_price_refund_amount else 0 end)  high_price_refund_amount
    from user_orders uos
    group by uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time,uos.low_price_refund_amount,uos.low_price_refund_time
      ,uos.high_price_order_id,uos.high_price_paid_time,uos.high_price_paid_amount
)uos
group by uos.low_price_order_id,uos.low_price_paid_amount,uos.low_price_paid_time

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手猫助手Agent技术探索总结

随着LLM的发展&#xff0c;ChatGPT能力不断增强&#xff0c;AI不断有新的概念提出&#xff0c;一种衍生类型的应用AI Agent也借着这股春风开启了一波话题热度&#xff0c;各种初创公司&#xff0c;包括Open AI内部也都在密切关注着AI Agent领域的变化。阿里集团内的AI团队也有很…

容器运行nslookup提示bash: nslookup: command not found【笔记】

在容器中提示bash: nslookup: command not found&#xff0c;表示容器中没有安装nslookup命令。 可以通过以下命令安装nslookup&#xff1a; 对于基于Debian/Ubuntu的容器&#xff0c;使用以下命令&#xff1a; apt-get update apt-get install -y dnsutils对于基于CentOS/R…

【Vue】如何提供访问vuex的数据

文章目录 一、提供数据二、访问Vuex中的数据通过$store访问的语法1&#xff09;模板中使用2&#xff09;组件逻辑中使用3&#xff09;js文件中使用 三、通过辅助函数 - mapState获取 state中的数据 一、提供数据 State提供唯一的公共数据源&#xff0c;所有共享的数据都要统一…

6.7 输入输出流

输入&#xff1a;将数据放到程序&#xff08;内存&#xff09;中 输出&#xff1a;将数据从程序&#xff08;内存&#xff09;放到设备中 C的输入输出分为3种形式&#xff1a; 从键盘屏幕中输入输出&#xff0c;称为标准IO 对于磁盘进行标准输入输出&#xff0c;称为文件IO…

安装ps提示vcruntime140.dll丢失的解决方法,总结5种解决方法

在电脑使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“找不到vcruntime140.dll”。这个问题可能会导致程序无法正常启动或运行&#xff0c;因此了解其原因和解决方法是非常必要的。小编将从多个方面对“找不到vcruntime140.dll”这一问题进行详细…

端午与高考的交汇点:家的温暖与梦想的起点

当端午节的粽香弥漫在街头巷尾&#xff0c;高考的脚步也悄然而至。这两个看似毫无关联的时刻&#xff0c;却在每年的六月&#xff0c;奇妙地交汇在一起&#xff0c;为我们带来了一段特别的记忆。这不仅是家的温暖与梦想的起点相遇的时刻&#xff0c;更是传统文化与现代追求共融…

用户输入表格数据设计(XPTable控件使用说明九)

XP Table控件可以编辑数据&#xff0c;程序也可以使用编辑后的数据&#xff0c;但是程序新建时又从初始化数据到模型到显示&#xff0c;这两步有点绕&#xff0c;做了一个实例来说明这块内容。 流程1&#xff1a;初始化数据--> model--> UI show 流程2&#xff1a;UI--…

【面试官】知道synchronized锁升级吗

一座绵延在水上的美术馆——白鹭湾巧克力美术馆。它漂浮于绿水之上&#xff0c;宛如一条丝带轻盈地伸向远方 文章目录 可重入锁synchronized实现原理 synchronized缺点保存线程状态锁升级锁升级优缺点 1. 可重入锁 面试官&#xff1a;知道可重入锁有哪些吗? 可重入意味着获取…

【Git】之 【Bug】clone 克隆失败 过早的文件结束符

问题 解决 参考&#xff1a;git clone报错 过早结束问题解决方法 git config --global http.lowSpeedLimit 0 git config --global http.lowSpeedTime 999999 git config --global http.postBuffer 10024288000 git config --list

wireshark 标记自己想要的数据包

1:点击视图 2:点击视图-着色规则 点击新增一行,双击名称-进行编辑 过滤器规则-编辑自己想要看到的 点击前景-选择凸出显示颜色 点击背景--选择凸出显示颜色 点击确定按钮

LDR6020一拖二快充线:高效充电的新选择

LDR6020一拖二快充线&#xff1a;高效充电的新选择 随着移动设备的普及和功能的日益增强&#xff0c;电池续航成为了用户关注的重点之一。为了满足用户对于快速充电的需求&#xff0c;各大厂商纷纷推出了各种快充技术和产品。在这个背景下&#xff0c;LDR6020一拖二快充线凭借…

PowerDesigner导入Excel模板生成数据表

PowerDesigner导入Excel模板生成数据表 1.准备好需要导入的Excel表结构数据,模板内容如下图所示 2.打开PowerDesigner,新建一个physical data model文件,填入文件名称,选择数据库类型 3.点击Tools|Execute Commands|Edit/Run Script菜单或按下快捷键Ctrl Shift X打开脚本窗口…

台湾合泰原装BS66F360 封装LQFP-44 电容触摸按键 AD+LED增强型触控

BS66F360是一款由Holtek Semiconductor Inc.生产的微控制器&#xff08;microcontroller&#xff09;&#xff0c;具有触摸检测和LED驱动功能。其应用领域广泛&#xff0c;包括但不限于以下几个方面&#xff1a; 1. 触摸按键应用&#xff1a;BS66F360内置了触摸按键检测功能&am…

记一个ESP12-F芯片的坑

这两个都叫ESP-12F从外观上很难区分他们的差别&#xff0c;甚至背面的引脚都是一样的 这个单独的芯片就是从板子上拆下来的&#xff0c;使用这颗芯片按住FLASH按键LED灯会亮&#xff0c;很离谱&#xff0c;led灯的引脚是GPIO2 flash引脚是GPIO0&#xff0c;他们之间的内部封装…

matplotlib 动态显示训练过程中的数据和模型的决策边界

文章目录 Github官网文档简介动态显示训练过程中的数据和模型的决策边界安装源码 Github https://github.com/matplotlib/matplotlib 官网 https://matplotlib.org/stable/ 文档 https://matplotlib.org/stable/api/index.html 简介 matplotlib 是 Python 中最常用的绘图…

el-table合计行前置在首行,自定义合计行方法

背景 el-table原生合计行是在标签内增加show-summary属性&#xff0c;在表尾实现设计合计&#xff0c;且只对表格当前页面显示的列数据进行合计。element-UI效果如下图所示。 现要求在首行显示合计行&#xff0c;并自定义合计逻辑实现如下效果。 图示表格中&#xff0c;成本…

数据结构--线性表和串

个人介绍 hello hello~ &#xff0c;这里是 code袁~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的…

AGP4+ 打包运行闪退,AGP7+ 正常(has code but is marked native or abstract)

问题 安装应用&#xff0c;点击图标启动立马闪退&#xff01; 诡异的闪退&#xff1a;AGP4 打包运行闪退&#xff0c;AGP7 正常 unity 导出的 Android 日志两个主要点&#xff1a; com.android.boot.App 是 Android 的 application 子类&#xff0c;程序入口 java.lang.Class…

网站开发需要用到哪些技术

网站开发涉及到多种技术&#xff0c;因为它需要前端和后端和数据库。 1.前端设计 在开发网站前端之前&#xff0c;需要提前设计前端的样子&#xff0c;这个时候就需要用到ps设计技术&#xff0c;美工技术&#xff0c;这个需要专业的知识储备才能把它做的更好&#xff0c…

若依项目部署(Linux2.0)

解压jdk tar -zxvf jdk-8u151-linux-x64.tar.gz 配置Java环境变量&#xff1a; vim /etc/profile export JAVA_HOME/root/soft/jdk1.8.0_151 export JRE_HOME${JAVA_HOME}/jre export CLASSPATH.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH${JAVA_HOME}/bin:$PATH 设置环境…