代码随想录算法训练营day31|455.分发饼干、376.摆动序列、53.最大子序和

news2024/11/17 21:35:53

分发饼干

455. 分发饼干 - 力扣(LeetCode)

贪心算法,让每个饼干给到能够满足的孩子,所以需要对饼干尺寸和孩子的满足值先进行排序,然后针对每一个饼干的尺寸,挑选恰好能够满足的孩子(这里表述可能不准确,即从大到小,都选择能够满足的孩子,满足后结果返回值加1),这里选用while循环比较简单,具体代码如下。

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        // 对孩子的胃口值和饼干的尺寸进行排序
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        // 初始化饼干索引为饼干数组的最后一个元素
        int index = s.size()-1;
        int result = 0;
        // 从孩子的胃口值数组的最后一个元素开始遍历
        int i = g.size()-1;
        // 当饼干索引大于等于0时,继续执行
        while(index>=0){
            // 如果孩子的索引小于0,则所有孩子都已被考虑,跳出循环
            if(i < 0){
                break;
            }
            // 如果当前饼干可以满足当前孩子(饼干的尺寸大于等于孩子的胃口值)
            if(s[index]>=g[i]){
                // 移动到下一个孩子和下一个饼干
                index--;
                i--;
                // 结果加一
                result++;
            }
            else{
                // 如果当前饼干不能满足当前孩子,则移动到下一个孩子
                i--;
            }
        }
        // 返回可以满足的孩子数量
        return result;
    }
};

算法的时间复杂度为O(nlogn),排序需要O(nlogn),循环遍历一次需要O(n),总体需要O(nlogn)的复杂度,空间复杂度考虑排序需要的空间O(logn),其余所需的空间为O(1),所以空间复杂度应该为O(logn)。

摆动序列

376. 摆动序列 - 力扣(LeetCode)

具体参考代码随想录,确实没想到。。。

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://programmercarl.com/0376.%E6%91%86%E5%8A%A8%E5%BA%8F%E5%88%97.html#%E6%80%9D%E8%B7%AF

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};

算法时间复杂度为O(n)遍历一次,空间复杂度为O(1)。

最大子序和

53. 最大子数组和 - 力扣(LeetCode)

如果在某个点,当前子数组的和变成了负数,那么它对于后续的子数组来说就没有任何益处,因此,可将其重置为0,同时,每次都记录下当前子数组和的最大值,这样就可以找到全局的最大子数组和。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        // 初始化当前子数组的和为0
        int sum = 0;
        // 初始化最大子数组和为数组的第一个元素
        int pre = nums[0];
        // 遍历数组中的每个元素
        for(int i = 0; i < nums.size();i++){
            // 将当前元素加到当前子数组的和上
            sum += nums[i];
            // 如果当前子数组的和大于之前记录的最大子数组和,则更新最大子数组和
            if(sum>pre){
                pre = sum;
            }
            // 如果当前子数组的和小于0,则重置当前子数组和为0
            // 这是因为负数会减少子数组的和,所以不可能成为最大子数组和的一部分
            if(sum < 0){
                sum = 0;
            }
        }
        // 返回最大子数组和
        return pre;
    }
};

算法的时间复杂度为O(n),空间复杂度为O(1)。

感觉贪心算法真的就是能想到的话很简单,想不到的话直接寄啊。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799768.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

fps游戏如何快速定位矩阵

fps游戏如何快速定位矩阵 矩阵特点: 1、第一行第一列值的范围在**-1 ---- 1**之间&#xff0c;如果开镜之后值会变大。 2、第一行第三列的值始终为 0。 3、第一行第四列 的值比较大 &#xff0c; >300或者**<-300**。 根据这三个特点&#xff0c;定位矩阵已经足够了…

DevExpress winForm gridView 设置复选框并可多选

OptionsSelection.MultiSelect True OptionsSelection.MultiSelectMode CheckBoxRowSelect

LabVIEW电路板性能与稳定性测试系统

LabVIEW电路板性能与稳定性测试系统 概述&#xff1a; 开发基于LabVIEW的电路板性能与稳定性测试系统&#xff0c;通过集成多种测试仪器&#xff0c;实现对电路板的电气性能和长期稳定性的全面评估。系统涵盖了电压、电流、温度等多项参数的监测&#xff0c;并具备自动化测试…

Towards Graph Contrastive Learning: A Survey and Beyond

目录 Towards Graph Contrastive Learning- A Survey and Beyond摘要IntroductionPRELIMINARY符号说明GNN对比学习下游任务 GCL自监督学习增强策略基于规则随机扰动或mask子图采样图扩散 基于学习图结构学习图对抗训练图合理化 对比模式同尺度对比全局上下文局部 跨尺度对比局部…

android-JNI

1.2【静态库】的特点&#xff1a; &#xff08;.a&#xff09; ①静态库对函数库的链接是在编译期完成的。执行期间代码装载速度快。 ②使可执行文件变大&#xff0c;浪费空间和资源&#xff08;占空间&#xff09;。 ③对程序的更新、部署与发布不方便&#xff0c;需要全量更新…

G5 - Pix2Pix理论与实战

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 目录 理论知识图像翻译CGANU-NetPix2Pix损失函数模型结构生成器差别器 模型效果总结与心得体会 理论知识 前面已经学习了GAN与CGAN&#xff0c;这节开始学习P…

Android Webview 详解

一 简介 一个基于webkit引擎、展现web页面的控件 Android 4.4前&#xff1a;Android Webview在低版本 & 高版本采用了不同的webkit版本的内核Android 4.4后&#xff1a;直接使用了Chrome内核 1.1 作用 在 Android 客户端上加载h5页面在本地 与 h5页面实现交互 & …

SpringCloud 微服务中网关如何记录请求响应日志?

在基于SpringCloud开发的微服务中&#xff0c;我们一般会选择在网关层记录请求和响应日志&#xff0c;并将其收集到ELK中用作查询和分析。 今天我们就来看看如何实现此功能。 日志实体类 首先我们在网关中定义一个日志实体&#xff0c;用于组装日志对象 Data public class …

秒杀优化+秒杀安全

1.Redis预减库存 1.OrderServiceImpl.java 问题分析 2.具体实现 SeckillController.java 1.实现InitializingBean接口的afterPropertiesSet方法&#xff0c;在bean初始化之后将库存信息加载到Redis /*** 系统初始化&#xff0c;将秒杀商品库存加载到redis中** throws Excepti…

深入解析智慧互联网医院系统源码:医院小程序开发的架构到实现

本篇文章&#xff0c;小编将深入解析智慧互联网医院系统的源码&#xff0c;重点探讨医院小程序开发的架构和实现&#xff0c;旨在为相关开发人员提供指导和参考。 一、架构设计 智慧互联网医院系统的架构设计是整个开发过程的核心&#xff0c;直接影响到系统的性能、扩展性和维…

Vue3 【实战】封装 useLocation

技术要点 通过 Vue3 的组合式API 仿写 react 中的 hook 代码实现 封装 hooks/useLocation.js import { reactive, onMounted, toRefs } from vue// 模拟异步获取 function getLocation(fail) {return new Promise((resolve) > {setTimeout(() > {if (fail) {// 模拟失败…

计算机网络学习记录 网络层 Day4(下)

计算机网络学习记录 网络层 Day4 &#xff08;下&#xff09; 你好,我是Qiuner. 为记录自己编程学习过程和帮助别人少走弯路而写博客 这是我的 github https://github.com/Qiuner ⭐️ ​ gitee https://gitee.com/Qiuner &#x1f339; 如果本篇文章帮到了你 不妨点个赞吧~ 我…

(深度学习记录)第TR4周:Pytorch复现Transformer

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 &#x1f3e1;我的环境&#xff1a; 语言环境&#xff1a;Python3.11.4编译器&#xff1a;Jupyter Notebooktorcch版本&#xff1a;2.0.…

聊聊DoIP吧(二)-报文结构和时间参数

书接上回&#xff0c;DoIP报文及其在以太网帧中的位置&#xff1a;图片来自Vector官网 这里我们来看看DoIP报文结构&#xff1a; DoIP协议时间参数详解 - 知乎 (zhihu.com)

MySQL 高级 - 第十一章 | 索引优化与查询优化

目录 第十一章 索引优化与查询优化11.1 数据准备11.2 索引失效案例11.2.1 全值匹配10.2.2 最佳左前缀法则10.2.3 主键插入顺序10.2.4 计算、函数、类型转换&#xff08;自动或手动&#xff09;导致索引失效10.2.5 范围条件右边的列索引失效10.2.6 不等于&#xff08;! 或者 <…

算法-分治策略

概念 分治算法&#xff08;Divide and Conquer&#xff09;是一种解决问题的策略&#xff0c;它将一个问题分解成若干个规模较小的相同问题&#xff0c;然后递归地解决这些子问题&#xff0c;最后合并子问题的解得到原问题的解。分治算法的基本思想是将复杂问题分解成若干个较…

一文读懂AI时代GPU的内存新宠-HBM

一文读懂GPU最强辅助&#xff1a;HBM HBM&#xff0c;即高带宽内存&#xff0c;是一项领先的3D堆叠DRAM技术&#xff0c;专为高性能计算和图形处理单元&#xff08;GPU&#xff09;设计&#xff0c;满足其对内存带宽和容量的极致需求。该技术由AMD与海力士携手研发&#xff0c;…

eclipse连接后端mysql数据库并且查询

教学视频&#xff1a;https://www.bilibili.com/video/BV1mK4y157kE/?spm_id_from333.337.search-card.all.click&vd_source26e80390f500a7ceea611e29c7bcea38本人eclipse和up主不同的地方如下&#xff0c;右键项目名称->build path->configure build path->Libr…

EasyExcel导出多个sheet封装

导出多个sheet 在需求中&#xff0c;会有需要导出多种sheet的情况&#xff0c;那么这里使用easyexcel进行整合 步骤 1、导入依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><d…

IO进程线程(十)进程间通信 消息队列 共享内存 信号灯集

文章目录 一、IPC(Inter-Process Communication)进程间通信相关命令 &#xff1a;&#xff08;一&#xff09;ipcs --- 查看IPC对象&#xff08;二&#xff09;获取IPC键值&#xff08;三&#xff09;删除IPC对象的命令&#xff08;四&#xff09;获取IPC键值的函数1. 函数定义…