Flink 基于 TDMQ Apache Pulsar 的离线场景使用实践

news2025/1/11 5:04:50

背景

Apache Flink 是一个开源的流处理和批处理框架,具有高吞吐量、低延迟的流式引擎,支持事件时间处理和状态管理,以及确保在机器故障时的容错性和一次性语义。Flink 的核心是一个分布式流数据处理引擎,支持 Java、Scala、Python 和 SQL 编程语言,可以在集群或云环境中执行数据流程序。它提供了 DataStream API 用于处理有界或无界数据流,DataSet API 用于处理有界数据集,以及 Table API 和 SQL 接口用于关系型流和批处理。目前 Flink 最新已经迭代至 1.20 版本,在此过程中不光是 Flink 框架,插件本身也有部分 API 以及配置存在变更,本文主要针对较高版本的 1.17 Flink Pulsar 插件进行测试验证,目前 Flink 版本如下: https://nightlies.apache.org/flink/

image.png

部署 Flink

设置 Flink 环境配置

参考 Flink 1.17 官方文档,部署 Flink Docker 版本 https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/deployment/resource-providers/standalone/docker/#getting-started
首先配置 Flink 集群 JobManager 和 TaskManager 环境信息,注意由于 Connector Pulsar 会使用到堆外内存,并且默认任务的堆外内存为 0,因此此处需要显式声明堆外内存大小 taskmanager.memory.task.off-heap.size,这里设置为 1GB https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/deployment/memory/mem_setup_tm/#configure-off-heap-memory-direct-or-native

image.png

$ FLINK_PROPERTIES=$'\njobmanager.rpc.address: 
jobmanager\ntaskmanager.memory.task.offheap.size: 
1gb\ntaskmanager.memory.process.size: 4gb'
$ docker network create flink-network

部署 JobManager

配置环境变量后部署 JobManager,这里默认映射端口为 8081,部署后登录 8081 端口可以看到 Flink Dashboard 信息。

$ docker run \
    --rm \
    --name=jobmanager \
    --network flink-network \
    --publish 8081:8081 \
    --env FLINK_PROPERTIES="${FLINK_PROPERTIES}" \
    flink:1.17.2-scala_2.12 jobmanager

image.png

部署 TaskManager

JobManager 是维护协调任务的组件,部署 JobManager 后还需要部署具体运行任务的 TaskManager。

$ docker run \
    --rm \
    --name=taskmanager \
    --network flink-network \
    --env FLINK_PROPERTIES="${FLINK_PROPERTIES}" \
    flink:1.17.2-scala_2.12 taskmanager

运行 TaskManager 后,可以在 8081 JobManager 控制台看到 TaskManager 已经被成功注册,至此 Flink Docker 组件部署完成。

image.png

下载 Flink Cli

在本地编译打包 Pulsar 任务后,还需要使用 Flink Cli 提交本地任务到 Flink Docker 集群,从下方网址下载与当前 Docker 版本一致的 Flink 二进制文件并且解压到本地。 https://flink.apache.org/downloads/

image.png

Demo:Topic 复制

参考 Flink Pulsar Connector 社区文档和 Oceanus 相关文档,Demo 使用 1.17 版本 Flink SDK 将命名空间的一个 Topic 消息全部复制到另一个 Topic 中,Demo 主要展示 Flink Connector 的基础用法,没有使用自定义序列化器及反序列化器,而是使用的是 Connector 内置的 String 序列化器。 https://cloud.tencent.com/document/product/849/85885#pulsar-source-.E5.92.8C-sink-.E7.A4.BA.E4.BE.8B https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/connectors/datastream/pulsar/#apache-pulsar-connector

主要逻辑

核心逻辑见下方代码,首先使用 ParameterTool 工具解析命令行中传入的参数,之后根据参数信息使用 Connector Source 和 Sink Builder 方法创建一个从 InputTopic 中获取消息发送到 OutputTopic 的 Flink Stream。

public static void main(String[] args) throws Exception {
    final ParameterTool parameterTool = ParameterTool.fromArgs(args);
if (parameterTool.getNumberOfParameters() < 2) {
        System.err.println("Missing parameters!");
        return;
    }
    final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
    env.enableCheckpointing(60000);
    env.getConfig().setGlobalJobParameters(parameterTool);
    String brokerServiceUrl = 
parameterTool.getRequired("broker-service-url");
    String inputTopic = 
parameterTool.getRequired("input-topic");
    String outputTopic = 
parameterTool.getRequired("output-topic");
    String subscriptionName = 
parameterTool.get("subscription-name", "testDuplicate");
    String token = parameterTool.getRequired("token");
    //  source
    PulsarSource<String> source = PulsarSource.builder()
            .setServiceUrl(brokerServiceUrl)
            .setStartCursor(StartCursor.latest())
            .setTopics(inputTopic)
            .setDeserializationSchema(new 
SimpleStringSchema())
           .setSubscriptionName(subscriptionName)
           .setAuthentication("org.apache.pulsar.client.impl.auth.AuthenticationToken", token)
           .build();
    DataStream<String> stream = env.fromSource(source, 
WatermarkStrategy.noWatermarks(), "Pulsar Source");
    //  sink
    PulsarSink<String> sink = PulsarSink.builder()
            .setServiceUrl(brokerServiceUrl)
            .setTopics(outputTopic)
            .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
            .setAuthentication("org.apache.pulsar.client.impl.auth.AuthenticationToken", token) 
            .setConfig(PulsarSinkOptions.PULSAR_BATCHING_ENABLED, false)
            .setSerializationSchema(new 
SimpleStringSchema())
            .build();
    stream.sinkTo(sink);
    env.execute("Pulsar Streaming Message Duplication");
}

验证

在 TDMQ Pulsar 版控制台创建流入 Topic NinjaDuplicationInput1 和流出 Topic NinjaDuplicationOutput1。

image.png

代码编译为 Jar 包后,本地上传 Jar 包到 Flink Docker,从角色管理界面获取具有生产和消费角色的 token,命令如下所示:

/usr/local/services/flink/flink-1.17.2 # 
/usr/local/services/flink/flink-1.17.2/bin/flink run 
/tmp/wordCount/pulsar-flink-examples-0.0.1-SNAPSHOT-jar-with-dependencies.jar \

    --broker-service-url http://pulsar-xxxxx \
    --input-topic 
pulsar-g8akj4eow8z8/dev-tdmq-ninjazhou-1713856927/ninjaDuplicationInput1 \
    --outputtopic 
pulsarg8akj4eow8z8/devtdmqninjazhou1713856927/ninjaDuplicationOutput1 \
    --subscription-name ninjaTest1 \
    --token 
eyJrZXlJZCI6InB1bHNhci1nOGFrajRlb3c4ejgiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJwdWxzYXItZzhha2o0ZW93OHo4X2Rldi10ZG1xLW5pbmphemhvdS0xNzEzODU2OTI3LWRldmNsb3VkIn0.O89TuTl0PMca7tLN9aGvHvqt7QZ9yMrJh1z3VOz7EVc

Job has been submitted with JobID 
c1bdab89c01ef16e00579bd2c6648859

提交任务后,可以看到 Flink Dashboard 出现对应任务,并且状态处于 Running。

image.png

在命令行往 NinjaDuplicationInput1 Topic 发送消息。

/usr/local/services/pulsar/apache-pulsar-2.9.5/bin/pulsar-client \
--url http://pulsar-xxxxxx \
--auth-params token:eyJrZXlJZCI6InB1bHNhci1nOGFrajRlb3c4ejgiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJwdWxzYXItZzhha2o0ZW93OHo4X2Rldi10ZG1xLW5pbmphemhvdS0xNzEzODU2OTI3LWRldmNsb3VkIn0.O89TuTl0PMca7tLN9aGvHvqt7QZ9yMrJh1z3VOz7EVc  \
--auth-plugin org.apache.pulsar.client.impl.auth.AuthenticationToken \
produce \
-m "i am the bone of my sword" \
-n 5 \
pulsar-g8akj4eow8z8/dev-tdmq-ninjazhou-1713856927/ninjaDuplicationInput1

消息发送完成后,可以在消息查询控制台观察到目标 Topic NinjaDuplicationOutput1 也出现了五条消息,并且消息内容和发送消息一致。

image.png

image.png

查看 Docker TaskManager 标准输出也能观察到 Sink 往目标 Topic 发送消息的日志。

image.png

Demo:单词计数

单词计数作为 Flink 中最常见的 Demo,能够比较好的阐述 Flink 的流处理思想。此 Demo 参考 StreamNative 的 Demo,使用 1.17 Flink SDK,将 Pulsar Topic 作为源和目标资源,统计源 Topic 消息中每个时间窗口各个单词出现的次数,并且将结果投递到目标 Topic 中。 https://github.com/streamnative/examples/blob/master/pulsar-flink/README.md

主要逻辑

整体 Demo 项目文件见下方链接 pulsar-flink-example.zip 核心逻辑见下方代码,首先使用 ParameterTool 工具解析命令行中传入的参数,之后使用 Flink 内置的反序列化器解析消息体为字符串,在数据处理部分使用系统时间窗口统计时间窗内流入的消息,并且对于每个出现的单词汇聚生成 WordCount 对象,最后使用自定义的序列化器,将 WordCount 对象序列化为 Json 字节数组,投递到目标 Topic 中。 目前 TDMQ pulsar Connector 支持 Pulsar Schema、Flink Schema 以及自定义序列化器三种方法将 Java 对象序列化为 Pulsar Sink 的字节数组消息体。推荐代码使用自定义序列化器的方式序列化定义的 WordCount 对象
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/connectors/datastream/pulsar/#serializer
还需要注意默认 Sink 配置是开启 Batch Send 模式的,在控制台消息查询时,Batch Message 只会查询到 Batch 中的第一条消息,不利于对照消息数量,Demo 中关闭了 Batch Send 功能。

/**
 * 参考 streamNative pulsar flink demo
 * <a href="https://github.com/streamnative/examples/tree/master/pulsar-flink">pulsar-flink example</a>
 * 由于上方链接的 streamNative flink demo 使用 1.10.1 版本 flink 以及 2.4.17 版本 pulsar connector,
 * 与当前 1.20 社区版本的 flink 和 pulsar connector api 已经存在部分 api 差异
 * 因此本 demo 使用 1.17 flink 版本进行重构
 * <a href="https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/deployment/resource-providers/standalone/overview/">1.17 flink doc</a>
 * <p>
 * demo 统计时间窗口内源 topic 所有消息中每个单词出现频率次数
 * 并且将统计结果按照每个单词对应一条消息的格式,序列化后消息后投递到目标 topic 中
 *
 */
public class PulsarStreamingWordCount {
    private static final Logger LOG = LoggerFactory.getLogger(PulsarStreamingWordCount.class);
    
    public static void main(String[] args) throws Exception 
{
        //  解析任务传参
        //  默认使用 authToken 方式鉴权
        final ParameterTool parameterTool = 
ParameterTool.fromArgs(args);
        if (parameterTool.getNumberOfParameters() < 2) {
            System.err.println("Missing parameters!");
            return;
        }
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
        env.enableCheckpointing(60000);
env.getConfig().setGlobalJobParameters(parameterTool);
        String brokerServiceUrl = 
parameterTool.getRequired("broker-service-url");
        String inputTopic = 
parameterTool.getRequired("input-topic");
        String outputTopic = 
parameterTool.getRequired("output-topic");
        String subscriptionName = 
parameterTool.get("subscription-name", "WordCountTest");
        String token = parameterTool.getRequired("token");
        int timeWindowSecond = parameterTool.getInt("time-window", 60);
        //  source
        PulsarSource<String> source = 
PulsarSource.builder()
                .setServiceUrl(brokerServiceUrl)
                .setStartCursor(StartCursor.latest())
                .setTopics(inputTopic)
                //  此处将 message 中的 payload 序列化成字符串类型
                //  目前 source 只支持解析消息 payload 中的内容,将 payload 中的内容解析成 pulsar schema 对象或者自定义的 class 对象
                //  而无法解析 message 中 properties 中的其他属性,例如 publish_time
                //  如果需要解析 message 中的 properties,需要在继承类中实现 PulsarDeserializationSchema.getProducedType() 方法
                //  getProducedType 这个方法实现较为繁琐,需要声明每个反序列化后的属性
                //  
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/connectors/datastream/pulsar/#deserializer
               .setDeserializationSchema(new 
SimpleStringSchema())
               .setSubscriptionName(subscriptionName)
.setAuthentication("org.apache.pulsar.client.impl.auth.AuthenticationToken", token)
               .build();
        //  由于此处没有使用消息体中的时间,即没有使用消息的 publish_time
        //  因此此处使用 noWatermark 模式,使用 taskManager 的时间作为时间窗口
        DataStream<String> stream = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Pulsar Source");
        //  process
        //  解析 source 中每行消息,通过空格分割成单个单词,之后进行汇聚处理并且初始化成 WordCount 结构体
        //  这里使用 TumblingProcessingTimeWindows,即使用当前 taskManager 系统时间计算时间窗口
        DataStream<WordCount> wc = stream
                .flatMap((FlatMapFunction<String, WordCount>) (line, collector) -> {
                    LOG.info("current line = {}, word list = {}", line, line.split("\\s"));
                    for (String word : line.split("\\s")) {
                        collector.collect(new 
WordCount(word, 1, null));
                    }
                })
                .returns(WordCount.class)
                .keyBy(WordCount::getWord)
                .window(TumblingProcessingTimeWindows.of(Time.seconds(timeWindowSecond)))
                .reduce((ReduceFunction<WordCount>) (c1, c2) -> {
                    WordCount reducedWordCount = new WordCount(c1.getWord(), c1.getCount() + c2.getCount(), null);
                    LOG.info("previous [{}] [{}], current wordCount {}", c1, c2, reducedWordCount);
                    return reducedWordCount;
                });
        //  sink
        //  目前 1.17 flink 序列化提供了两种已经实现的方法,一种是使用 pulsar 内置 schema,另一种是使用 flink 的 schema
        //  但由于目前 tdmq pulsar 提供的是 2.9 版本的 pulsar,对于 schema 支持还不够完善
        //  此处使用 flink PulsarSerializationSchema<T> 提供的接口,当前主要需要实现 serialize(IN element, PulsarSinkContext sinkContext) 方法
//  将传入的 IN 对象自定义序列化为 byte 数组
//  https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/connectors/datastream/pulsar/#serializer
PulsarSink<WordCount> sink = PulsarSink.builder()
.setServiceUrl(brokerServiceUrl)
.setTopics(outputTopic)
.setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
.setAuthentication("org.apache.pulsar.client.impl.auth.AuthenticationToken", token)
.setConfig(PulsarSinkOptions.PULSAR_BATCHING_ENABLED, false)
.setSerializationSchema(new PulsarSerializationSchema<WordCount>() {
private ObjectMapper objectMapper;
@Override
public void open(
SerializationSchema.InitializationContext initializationContext,
PulsarSinkContext sinkContext,
SinkConfiguration sinkConfiguration)
throws Exception {
                        objectMapper = new ObjectMapper();
}
@Override
public PulsarMessage<?> serialize(WordCount wordCount, PulsarSinkContext sinkContext) {
//  此处将 wordCount 添加处理时间后,将 wordCount 使用 json 方式序列化为 byte 数组
//  以便能够直接查看消息体内容
byte[] wordCountBytes;
                        wordCount.setSinkDateTime(LocalDateTime.now().toString());
try {
                            wordCountBytes = objectMapper.writeValueAsBytes(wordCount);
} catch (Exception exception) {
                            wordCountBytes = exception.getMessage().getBytes();
}
return PulsarMessage.builder(wordCountBytes).build();
}
})
.build();
        wc.sinkTo(sink);
        env.execute("Pulsar Streaming WordCount");
}
}

验证

在 TDMQ Pulsar 版控制台创建流入 Topic NinjaWordCountInput1 和流出 Topic NinjaWordCountOutput1。

image.png

代码编译为 Jar 包后,本地上传 Jar 包到 Flink Docker,从角色管理界面获取具有生产和消费角色的 Token,命令如下所示。

/usr/local/services/flink/flink-1.17.2 # /usr/local/services/flink/flink-1.17.2/bin/flink run /tmp/wordCount/pulsar-flink-examples-0.0.1-SNAPSHOT-jar-with-dependencies.jar \

--broker-service-url http://pulsar-xxxx \

--input-topic pulsar-g8akj4eow8z8/dev-tdmq-ninjazhou-1713856927/ninjaWordCountInput1 \

--output-topic pulsar-g8akj4eow8z8/dev-tdmq-ninjazhou-1713856927/ninjaWordCountOutput1 \

--subscription-name ninjaTest3 \

--token eyJrZXlJZCI6InB1bHNhci1nOGFrajRlb3c4ejgiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJwdWxzYXItZzhha2o0ZW93OHo4X2Rldi10ZG1xLW5pbmphemhvdS0xNzEzODU2OTI3LWRldmNsb3VkIn0.O89TuTl0PMca7tLN9aGvHvqt7QZ9yMrJh1z3VOz7EVc

Job has been submitted with JobID 6f608d95506f96c3eac012386f840655

提交任务后,可以看到 Flink Dashboard 出现对应任务,并且状态处于 Running。

image.png

在命令行往 NinjaWordCountInput1 Topic 发送消息,此处一共发送两批消息,第一批发送 i am the bone of my sword 5 次,第二批发送 Test1 3 次。

/usr/local/services/pulsar/apache-pulsar-2.9.5/bin/pulsar-client \
--url http://pulsar-xxx \
--auth-params token:eyJrZXlJZCI6InB1bHNhci1nOGFrajRlb3c4ejgiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJwdWxzYXItZzhha2o0ZW93OHo4X2Rldi10ZG1xLW5pbmphemhvdS0xNzEzODU2OTI3LWRldmNsb3VkIn0.O89TuTl0PMca7tLN9aGvHvqt7QZ9yMrJh1z3VOz7EVc  \
--auth-plugin org.apache.pulsar.client.impl.auth.AuthenticationToken \
produce \
-m "i am the bone of my sword" \
-n 5 \
pulsar-g8akj4eow8z8/dev-tdmq-ninjazhou-1713856927/ninjaWordCountInput1
/usr/local/services/pulsar/apache-pulsar-2.9.5/bin/pulsar-client \
--url http://pulsar-g8akj4eow8z8.sap-8ywks40k.tdmq.ap-gz.qcloud.tencenttdmq.com:8080 \
--auth-params token:eyJrZXlJZCI6InB1bHNhci1nOGFrajRlb3c4ejgiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJwdWxzYXItZzhha2o0ZW93OHo4X2Rldi10ZG1xLW5pbmphemhvdS0xNzEzODU2OTI3LWRldmNsb3VkIn0.O89TuTl0PMca7tLN9aGvHvqt7QZ9yMrJh1z3VOz7EVc  \
--auth-plugin org.apache.pulsar.client.impl.auth.AuthenticationToken \
produce \
-m "test1" \
-n 3 \
pulsar-g8akj4eow8z8/dev-tdmq-ninjazhou-1713856927/ninjaWordCountInput1

消息发送完成后,可以在消息查询控制台观察到目标 Topic NinjaWordCountOutput1 出现了 8 条消息。

image.png

每条消息为单词名称,单词出现的次数,单词处理的时间点的 Json 字节数组,下图为 am 单词的消息结构,可以发现出现数量与投递消息数吻合,证明任务运行正常。

image.png

查看 TaskManager 可以看出消息体,以及每次解析的消息过程。

image.png

Flink Connector 用法总结

版本选择

目前 Flink 插件生产和消费经过调研,在不进行管控改造以及非标操作的情况下,能满足基本的 TDMQ Pulsar 版使用需求。截至现在 Apache Flink 已经发布 1.20 版本,目前推荐使用 Apache Flink 1.15-1.17 对应 Pulsar Connector,不推荐使用 1.15 以下版本,1.18 及以上版本可以参考 1.17 版本使用。

下面介绍 1.15 和 1.17 版本 Pulsar Flink Connector 主要配置。Flink 版本对应的 Flink Connector 依赖可以在 Pulsar Connector Dependencies 处获取。https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/connectors/datastream/pulsar/#dependency

image.png

各个版本文档链接: https://nightlies.apache.org/flink/

1.17 Flink Pulsar Connector

代码依赖

Java 项目中引入相关依赖,以 Maven 工程为例,在 pom.xml 添加以下依赖:

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-base</artifactId>
<version>1.17.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-pulsar</artifactId>
<version>4.1.0-1.17</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>1.17.2</version>
</dependency>

Source 代码示例

PulsarSource<String> source = PulsarSource.builder()
.setServiceUrl(brokerServiceUrl)
.setStartCursor(StartCursor.latest())
.setTopics(inputTopic)
.setDeserializationSchema(new SimpleStringSchema())
.setSubscriptionName(subscriptionName)
.setAuthentication("org.apache.pulsar.client.impl.auth.AuthenticationToken", token)
.build();

Source 参数说明

Connector Source 全部参数可参考 官方文档 ,下表是常用配置参数。

参数名称描述
setServiceUrlTDMQ Pulsar 版接入地址,例如 http://pulsar-xxx:8080
setStartCursor任务起始 topic 位点,目前支持 earliest,latest,消息 id 以及消息时间位点四种配置。需要注意如果任务对应订阅已经存在,则会优先直接使用订阅位点
setTopicstopic 名称,例如 pulsar-xxxxx/dev-tdmq-ninjazhou-1713856927/ninjaWordCountInput1
setDeserializationSchema反序列化消息schema,此处建议使用 Flink 内置的字符串反序列化器 SimpleStringSchema,或者使用 Pulsar 的字符串反序列化器 StringSchema,将消息转换成字符串后,再在业务代码中将字符串转换成自定义的对象
setSubscriptionName订阅名称
setAuthentication鉴权类,目前 tdmq pulsar 统一使用 jwt token 方式鉴权,因此此处固定填写为 setAuthentication(“org.apache.pulsar.client.impl.auth.AuthenticationToken”, )。token 填写 TDMQ 控制台角色秘钥,需要保证秘钥拥有对应 topic 消费权限

sink 代码示例

PulsarSink<String> sink = PulsarSink.builder()
.setServiceUrl(brokerServiceUrl)
.setTopics(outputTopic)
.setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
.setAuthentication("org.apache.pulsar.client.impl.auth.AuthenticationToken", token)
.setSerializationSchema(new SimpleStringSchema())
.build();

Sink 参数说明

Connector Sink 全部参数可参考 官方文档 ,下表是常用配置参数。

参数名称描述
setServiceUrlTDMQ Pulsar 版接入地址,例如 http://pulsar-xxx:8080
setTopicstopic 名称,例如 pulsar-xxxx/dev-tdmq-ninjazhou-1713856927/ninjaWordCountOutput1
setSerializationSchema序列化器,将变量序列化为字节数组。推荐自定义实现序列化参数接口,见下文注意事项
setDeliveryGuarantee传输可靠性保证,官方可选参数为 NONE,AT_LEAST_ONCE,EXACTLY_ONCE。由于 EXACTLY_ONCE 需要事务保证,此处只建议填写 AT_LEAST_ONCE,NONE
setAuthentication鉴权类,目前 TDMQ Pulsar 版统一使用 jwt token 方式鉴权,因此此处固定填写为 setAuthentication(“org.apache.pulsar.client.impl.auth.AuthenticationToken”, )。token 填写 TDMQ 控制台角色秘钥,需要保证秘钥拥有对应 topic 生产权限

1.15 flink pulsar connector

代码依赖

Java 项目中引入相关依赖,以 Maven 工程为例,在 pom.xml 添加以下依赖:

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-base</artifactId>
<version>1.15.4</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-pulsar</artifactId>
<version>1.15.4</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>1.15.4</version>
</dependency>   

Source 代码示例

PulsarSource<String> source = PulsarSource.builder()
.setServiceUrl(brokerServiceUrl)
.setAdminUrl(brokerServiceUrl)
.setStartCursor(StartCursor.latest())
.setTopics(inputTopic)
.setDeserializationSchema(PulsarDeserializationSchema.flinkSchema(new SimpleStringSchema()))
.setSubscriptionName(subscriptionName)
.setSubscriptionType(SubscriptionType.Exclusive)
.setConfig(PulsarOptions.PULSAR_AUTH_PLUGIN_CLASS_NAME, "org.apache.pulsar.client.impl.auth.AuthenticationToken")
.setConfig(PulsarOptions.PULSAR_AUTH_PARAMS, token)
.setConfig(PulsarSourceOptions.PULSAR_ENABLE_AUTO_ACKNOWLEDGE_MESSAGE, true)
.build();

Source 参数说明

connector source 全部参数可参考 官方文档 ,下表是常用配置参数。

参数名称描述
setServiceUrlTDMQ Pulsar 版接入地址,例如 http://pulsar-xxxxx:8080
setStartCursor任务起始 topic 位点,目前支持 earliest,latest,消息 id 以及消息时间位点四种配置。需要注意如果任务对应订阅已经存在,则会优先直接使用订阅位点
setTopicstopic 名称,例如 pulsar-xxxx/ninjaWordCountInput1
setDeserializationSchema反序列化消息 schema,此处建议使用 Flink 内置的字符串反序列化器 SimpleStringSchema,或者使用 Pulsar 的字符串反序列化器 StringSchema,将消息转换成字符串后,再在业务代码中将字符串转换成自定义的对象
setSubscriptionName订阅名称
setConfig(PulsarOptions.PULSAR_AUTH_PLUGIN_CLASS_NAME)鉴权类,目前 TDMQ Pulsar 版统一使用 jwt token 方式鉴权,因此此处固定填写为 setConfig(PulsarOptions.PULSAR_AUTH_PLUGIN_CLASS_NAME,“org.apache.pulsar.client.impl.auth.AuthenticationToken”)
setConfig(PulsarOptions.PULSAR_AUTH_PARAMS)鉴权值,目前TDMQ Pulsar 版 统一使用 jwt token 方式鉴权,因此此处固定填写为 setConfig(PulsarOptions.PULSAR_AUTH_PARAMS, ),token 填写 tdmq 控制台角色秘钥,需要保证秘钥拥有对应 topic 消费权限
setAdminUrl管控接入点地址,低版本 connector 需要使用此参数执行创建事务,修改 cursor 位点等管控操作,此处传入地址与 setServiceUrl 中相同
setSubscriptionType低版本 connector 需要指定订阅类型,而高版本默认使用 Exclusive 模式创建订阅。由于 shared 模式依赖事务 ack 消息,并且 pulsar connector 在初始化时已经会将分区 topic 的每个分区都创建 flink 分片,此时使用 shared 模式意义不大,因此在高版本中已经把 shared 模式去除。具体可以参考 [FLINK-30413] Drop Shared and Key_Shared subscription support in Pulsar connector - ASF JIRA 此处只推荐 Exclusive 或 Failover 订阅模式
setConfig(PulsarSourceOptions.PULSAR_ENABLE_AUTO_ACKNOWLEDGE_MESSAGE)如果不开启该参数,插件会依赖事务提交 ack 信息,否则在 Exclusive 和 Failover 订阅模式下会按照 autoCommitCursorInterval 设置的时间间隔自动 ack 拉取的消息,这里需要设置为 setConfig(PulsarSourceOptions.PULSAR_ENABLE_AUTO_ACKNOWLEDGE_MESSAGE, true)

Sink 代码示例

PulsarSink<String> sink = PulsarSink.builder()
.setServiceUrl(brokerServiceUrl)
.setAdminUrl(brokerServiceUrl)
.setTopics(outputTopic)
.setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
.setConfig(PulsarOptions.PULSAR_AUTH_PLUGIN_CLASS_NAME, "org.apache.pulsar.client.impl.auth.AuthenticationToken")
.setConfig(PulsarOptions.PULSAR_AUTH_PARAMS, token)
.setSerializationSchema(PulsarSerializationSchema.flinkSchema(new SimpleStringSchema()))
.build();

Sink 参数说明

Connector Sink 全部参数可参考 官方文档 ,下表是常用配置参数。

参数名称描述
setServiceUrlTDMQ Pulsar 版接入地址,例如 http://pulsar-xxxx:8080
setTopicstopic 名称,例如 pulsar-xxxx/dev-tdmq-ninjazhou-1713856927/ninjaWordCountOutput1
setSerializationSchema序列化器,将变量序列化为字节数组。推荐自定义实现序列化参数接口,见下文注意事项
setDeliveryGuarantee传输可靠性保证,官方可选参数为 NONE,AT_LEAST_ONCE,EXACTLY_ONCE。由于 EXACTLY_ONCE 需要事务保证,此处只建议填写 AT_LEAST_ONCE,NONE
setAdminUrl管控接入点地址,低版本 connector 需要使用此参数执行创建事务,修改 cursor 位点等管控操作,此处传入地址与 setServiceUrl 中相同
setConfig(PulsarOptions.PULSAR_AUTH_PLUGIN_CLASS_NAME)鉴权类,目前 TDMQ Pulsar 版统一使用 jwt token 方式鉴权,因此此处固定填写为 setConfig(PulsarOptions.PULSAR_AUTH_PLUGIN_CLASS_NAME,“org.apache.pulsar.client.impl.auth.AuthenticationToken”)
setConfig(PulsarOptions.PULSAR_AUTH_PARAMS)鉴权值,目前 TDMQ Pulsar 版统一使用 jwt token 方式鉴权,因此此处固定填写为 setConfig(PulsarOptions.PULSAR_AUTH_PARAMS, ),token 填写 TDMQ 控制台角色秘钥,需要保证秘钥拥有对应 topic 生产权限

注意事项

1.  由于 Connector Pulsar 会使用到堆外内存,并且默认任务的堆外内存为 0,因此执行 Pulsar Job 需要显式声明堆外内存大小 taskmanager.memory.task.off-heap.size,例如 1gb。

2.  SetSerializationSchema 反序列化提供了两种已经实现的方法,一种是使用 Pulsar 内置 Schema,另一种是使用 Flink 的 Schema。但这两种方法都会造成业务代码与 Schema 耦合。目前建议实现 PulsarSerializationSchema 接口,主要需要实现 Serialize(IN element, PulsarSinkContext sinkContext) 方法,将传入的 IN 对象自定义序列化为 Byte 数组。

3.  目前 Sink 默认开启 Enable_batch 批量投递模式,会将消息打包后投递。如果想要关闭批量投递功能,可以配置 SetConfig(PulsarSinkOptions.PULSAR_BATCHING_ENABLED, False)。

4.  Flink 时间窗口支持两种 时间获取方式 ,一种直接使用任务的系统时间 ProcessTime,另一种是事件自带时间 EventTime。但目前 Source 只支持解析消息 Payload 中的内容,将 Payload 中的内容解析成 Pulsar Schema 对象或者自定义的 Class 对象,而无法解析 Message 中 Properties 中的其他属性,例如 消息上传时间 Publish_time。如果需要解析 message 中的 Properties,根据文档 需要在继承类中 实现 PulsarDeserializationSchema.getProducedType() 方法。这个方法实现较为繁琐,需要声明每个反序列化后的属性,因此目前建议直接使用 ProcessTime 作为时间窗口时间。

5.  1.16 及以下版本 Flink Source 的 SetSubscriptionType 方法还保留了 Shared 和 Key_shared 订阅模式,这两种订阅模式依赖事务 ACK 消息,并且只有当任务 checkpoint 更新时才会统一提交事务和 ACK。但由于目前 TDMQ Pulsar 没有开放事务功能,因此当前不能同时配置 SetSubscriptionType(SubscriptionType.Shared) 和 SetConfig(PulsarSourceOptions.PULSAR_ENABLE_AUTO_ACKNOWLEDGE_MESSAGE, False) 参数。

6.  Oceanus 内置 Pulsar Connector 是基于 StreamNative 版本,适配 flink 1.13-1.14 版本的 connector,这两个版本较老,与新版本存在较多 API 不兼容,如果使用 Oceanus 内置版本 Pulsar Connector 与高版本 Flink,可能需要较多代码改造。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1797589.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软件管理及部分命令

sed命令 格式&#xff1a; sed [选项] 操作 目标文件 选项&#xff1a; -i&#xff1a;修改原始文件【如果不加-i&#xff0c;那就是仅仅修改内存中的文件副本】 案例&#xff1a;将1.txt中的tom修改成jerry。 sed -i "s/tom/jerry/g" 1.txt 将1…

数字驱动:企业发展的火箭助推器!

​ 在这个数字经济时代&#xff0c;数据就像火箭燃料&#xff0c;而数字驱动则是那强大的火箭助推器&#xff01;它正以惊人的力量助力企业飞速发展&#xff01; 数字驱动&#xff0c;助力企业发展的超强引擎&#xff01; 用数据说话&#xff0c;决策不再盲目&#xff01; 以数…

Java学习书籍推荐

本文推荐了Java基础&#xff0c;并发&#xff0c;虚拟机学习过程中&#xff0c;比较好的书籍&#xff0c;如果大家需要视频教程&#xff0c;可参考【软件开发】Java学习路线 或者B站文件夹同时会收藏其他Java视频&#xff0c;感谢关注。 指路&#xff1a;Java学习-创建者&…

RabbitMQ--Hello World(基础详解)

文章目录 先决条件RabbitMQ 初识RabbitMQ--Hello World发送接收 更多相关内容可查看 先决条件 本教程假定 RabbitMQ 已安装并在标准端口 &#xff08;5672&#xff09; 上运行。如果你 使用不同的主机、端口或凭据&#xff0c;连接设置将需要 调整。如未安装可查看Windows下载…

短视频矩阵系统----可视化剪辑独立开发(采用php)

短视频矩阵系统源头技术开发&#xff1a; 打磨短视频矩阵系统的开发规则核心框架可以按照以下几个步骤进行&#xff1a; 明确系统需求&#xff1a;首先明确系统的功能需求&#xff0c;包括短视频的上传、编辑、发布、播放等环节。确定系统的目标用户和主要的使用场景&#xff…

【数据结构】栈和队列-->理解和实现(赋源码)

Toc 欢迎光临我的Blog&#xff0c;喜欢就点歌关注吧♥ 前面介绍了顺序表、单链表、双向循环链表&#xff0c;基本上已经结束了链表的讲解&#xff0c;今天谈一下栈、队列。可以简单的说是前面学习的一特殊化实现&#xff0c;但是总体是相似的。 前言 栈是一种特殊的线性表&…

深入ES6:解锁 JavaScript 类与继承的高级玩法

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;JavaScript 精粹 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; ES5、ES6介绍 文章目录 &#x1f4af;Class&#x1f35f;1 类的由来&#x1f35f;2 co…

手把手Linux高可hadoop集群的搭建

高可用集群的搭建 在搭建高可用集群之前&#xff0c;如果搭建了完全分布式hadoop&#xff0c;先执行stop-all.sh停掉所有的服务&#xff0c;只保留jdk和zookeeper的2个服务&#xff0c;然后再去搭建。 目标&#xff1a; 高可用集群简介部署Hadoop高可用集群 一&#xff0e;…

java:spring cloud使用tcc-transaction实现分布式事务

# 安装tcc-transaction server和dashboard 参考这篇文章【https://changmingxie.github.io/zh-cn/docs/ops/server/deploy-alone.html】里面有mysql的建表脚本&#xff0c;先将数据库建好。 下载tcc-transaction cd /chz/install/tcc-transaction wget https://github.com/ch…

webgl_framebuffer_texture

ThreeJS 官方案例学习&#xff08;webgl_framebuffer_texture&#xff09; 1.效果图 2.源码 <template><div><div id"container"></div><div id"selection"><div></div></div></div> </templa…

嵌入式Linux系统编程 — 2.3 标准I/O库:格式化I/O

目录 1 格式化I/O简介 2 格式化输出 2.1 格式化输出函数简介 2.2 格式控制字符串 format 2.3 示例程序 3 格式化输入 3.1 格式化输入简介 3.2 格式控制字符串 format 3.3 示例程序 1 格式化I/O简介 在先前示例代码中&#xff0c;经常使用库函数 printf() 来输出程序中…

操作系统教材第6版——个人笔记6

3.3.4 页面调度 页面调度 当主存空间已满而又需要装入新页时&#xff0c;页式虚拟存储管理必须按照一定的算法把已在主存的一些页调出去 #主存满加新&#xff0c;把已在主存一些页调出选择淘汰页的工作称为页面调度 选择淘汰页的算法称为页面调度算法 页面调度算法设计不当&a…

【递归、搜索与回溯】递归、搜索与回溯准备+递归主题

递归、搜索与回溯准备递归主题 1.递归2.搜索3.回溯与剪枝4.汉诺塔问题5.合并两个有序链表6.反转链表7.两两交换链表中的节点8.Pow(x, n)-快速幂&#xff08;medium&#xff09; 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你…

解决Windows Hosts 文件因为权限无法修改的问题

如何修改 Windows Hosts 文件并添加域名映射 在日常工作中&#xff0c;可能需要修改 Windows 的 hosts 文件&#xff0c;以将特定的域名映射到指定的 IP 地址。本文介绍三种方法来完成这一任务&#xff1a;直接手动编辑 hosts 文件&#xff0c;使用批处理文件自动完成任务&…

哈默纳科Harmonic谐波减速机应用领域有哪些

在制造设备中&#xff0c;精确控制速度与位置的需求日益凸显&#xff0c;这为谐波减速机的广泛应用提供了广阔的舞台。哈默纳科Harmonic谐波减速机以结构紧凑、高精度、高刚度、高可靠性、便于安装维护等优势&#xff0c;在工业机器人和自动化系统中发挥着举足轻重的作用。 一、…

如何调用地方天地图?

我们在《如何申请自己的专属天地图&#xff1f;》一文中&#xff0c;为大家分享了如果申请专属天地图&#xff0c;并在水经微图&#xff08;以下简称“微图”&#xff09;中加载的具体方法。 于是&#xff0c;就有朋友问如何调地方用天地图。 现在&#xff0c;我们就以四川地…

六位一线AI工程师总结大模型应用摸爬滚打一年的心得,网友:全程高能!

六位一线AI工程师和创业者&#xff0c;把在大模型应用开发上摸爬滚打一整年的心得&#xff0c;全&#xff01;分&#xff01;享&#xff01;了&#xff01; &#xff08;奇怪的六一儿童节大礼包出现了&#xff09; 这篇干货长文&#xff0c;一时间成为开发者社区热议的话题。…

2024年几款优秀的SQL IDE优缺点分析

SQL 工具在数据库管理、查询优化和数据分析中扮演着重要角色。 以下是常见的 SQL 工具及其优缺点。 1. SQLynx 优点&#xff1a; 智能代码补全和建议&#xff1a;采用AI技术提供高级代码补全、智能建议和自动错误检测&#xff0c;大幅提高编写和调试SQL查询的效率。跨平台和…

蓝桥杯物联网竞赛_STM32L071_19_输出方波信号(PWM)

国赛考了一个方波&#xff0c;第一次考这个&#xff0c;连个示波器都没有 CUBMX配置&#xff1a; 按上述配置刚好是32MHZ / 32 / 100 10KHZ 理论&#xff1a; 频率&#xff1a;就是一秒钟能产生多少个脉冲&#xff0c;如下图: 这算是一个脉冲&#xff0c;1KHZ说明一秒钟产生…

源码发布Quantlab4.2,Deap因子挖掘|gplearn做不到的咱们也能做。(代码+数据)

原创文章第552篇&#xff0c;专注“AI量化投资、世界运行的规律、个人成长与财富自由"。 又到了星球发布代码的日子&#xff1a; 更新说明&#xff1a;1、Deap做因子挖掘的框架使用。值得说明的是&#xff0c;源码级别&#xff0c;并非产品级&#xff0c;不能指望输入一堆…