LangChain,一个强大的工具,允许根据用户输入创建对语言模型和其他工具的复杂调用链。就像拥有一个私人助理,可以根据手头的任务做出决定。本文来分享一下在 LangChain 中使用 Agents 的心路历程。
LangChain中代理的概念
在 LangChain 中,代理是一个组件,可以访问一套工具,并可以根据用户的输入决定使用哪个工具。有两种主要类型的代理:行为代理 Action Agents
和 计划和执行代理 Plan-and-Execute Agents
。
-
行为代理 Action Agents
决定采取的动作并一次一步地执行该动作。它们更传统,适用于小型任务。 -
计划和执行代理 Plan-and-Execute Agents
首先决定要采取的行动计划,然后一次执行这些行动。它们非常适合更复杂或长期运行的任务,因为初始规划步骤有助于保持长期目标和重点。然而,这伴随着更多调用和更高延迟的权衡。
Agent剖析
LangChain 中的代理由几个关键组件组成:
- 代理:这是应用程序逻辑所在的地方。它接受用户输入以及代理已采取的先前步骤的列表,并返回 AgentAction 或 AgentFinish。
- 工具:这些是代理可以采取的行动。为代理提供的工具在很大程度上取决于希望代理做什么。
- 工具包:这些是为特定用例设计的工具组。
- 代理执行器:这包装了一个代理和一系列工具。它负责迭代地运行代理,直到满足停止条件。
Agents 体验
现在来动手看看如何在实践中使用代理。为此,将使用 LangChain 提供的最简单、最高级别的 API。
首先,需要了解几个关键概念:
- 工具:执行特定任务的功能。这可以是 Google 搜索、数据库查找、Python REPL 和其他链。工具的接口目前是一个函数,期望将字符串作为输入,将字符串作为输出。
- LLM:为代理提供支持的语言模型。
- 代理:要使用的代理。这应该是一个引用支持代理类的字符串。
下面是一个如何初始化和运行代理的简单示例:
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
# Load the language model
llm = OpenAI(temperature=0)
# Load some tools to use
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# 使用工具、语言模型和代理类型初始化代理
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
# Test the agent NBA东部决赛比赛结果如何? 如何评价这场比赛? 如何评价这场比赛?
agent.run(
"What was the outcome of the NBA Eastern Conference finals? How to evaluate the match? How do you comment on the match?")
这个代理会给出答案,这场NBA东部决赛的比赛刚结束,Agent给出了正确的答案。
总结
总之,LangChain 中的代理是一个强大的工具,可以帮助创建对语言模型和其他工具的复杂调用链。它们可以定制以满足特定需求,无论是针对小型任务还是更复杂的长期运行任务。关键是要了解代理的不同组件以及它们如何协同工作以根据用户输入做出决策。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈