Signac|成年小鼠大脑 单细胞ATAC分析(1)

news2024/11/26 20:44:11

引言

在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。

本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。

实战

首先,我们需要导入Signac、Seurat等一些用于分析小鼠数据的软件包。

library(Signac)
library(Seurat)
library(EnsDb.Mmusculus.v79)

library(ggplot2)
library(patchwork)

预处理工作流程

counts <- Read10X_h5("../vignette_data/atac_v1_adult_brain_fresh_5k_filtered_peak_bc_matrix.h5")
metadata <- read.csv(
  file = "../vignette_data/atac_v1_adult_brain_fresh_5k_singlecell.csv",
  header = TRUE,
  row.names = 1
)

brain_assay <- CreateChromatinAssay(
  counts = counts,
  sep = c(":""-"),
  genome = "mm10",
  fragments = '../vignette_data/atac_v1_adult_brain_fresh_5k_fragments.tsv.gz',
  min.cells = 1
)

brain <- CreateSeuratObject(
  counts = brain_assay,
  assay = 'peaks',
  project = 'ATAC',
  meta.data = metadata
)

我们还可以向小鼠基因组的大脑对象添加基因注释。这将允许下游函数直接从对象中提取基因注释信息。

# extract gene annotations from EnsDb
annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79)

# change to UCSC style since the data was mapped to hg19
seqlevels(annotations) <- paste0('chr', seqlevels(annotations))
genome(annotations) <- "mm10"

# add the gene information to the object
Annotation(brain) <- annotations

计算 QC 指标

接下来我们计算一些有用的细胞 QC 指标。

brain <- NucleosomeSignal(object = brain)

我们可以分析所有细胞的DNA片段长度的周期性变化,并根据细胞核小体信号的强弱进行分类。观察结果表明,那些在单核小体与无核小体比例上表现异常的细胞,呈现出与其他细胞不同的条带图谱。而其他细胞则显示出了一次成功的ATAC-seq实验所特有的典型模式。

brain$nucleosome_group <- ifelse(brain$nucleosome_signal > 4'NS > 4''NS < 4')
FragmentHistogram(object = brain, group.by = 'nucleosome_group', region = 'chr1-1-10000000')
alt

在ATAC-seq实验中,Tn5转座酶在转录起始位点(TSS)处的整合事件的富集程度,是一个关键的质量控制指标,用于评价Tn5的定位效率。ENCODE联盟将TSS富集分数定义为TSS周围Tn5整合位点的计数与这些位点在相邻区域计数的比率。在Signac软件包中,我们可以使用TSSEnrichment()函数来为每个细胞计算这一富集分数。

brain <- TSSEnrichment(brain, fast = FALSE)

brain$high.tss <- ifelse(brain$TSS.enrichment > 2'High''Low')
TSSPlot(brain, group.by = 'high.tss') + NoLegend()
alt
brain$pct_reads_in_peaks <- brain$peak_region_fragments / brain$passed_filters * 100
brain$blacklist_ratio <- brain$blacklist_region_fragments / brain$peak_region_fragments

VlnPlot(
  object = brain,
  features = c('pct_reads_in_peaks''peak_region_fragments',
               'TSS.enrichment''blacklist_ratio''nucleosome_signal'),
  pt.size = 0.1,
  ncol = 5
)
alt

我们删除了这些 QC 指标异常值的细胞。

brain <- subset(
  x = brain,
  subset = peak_region_fragments > 3000 &
    peak_region_fragments < 100000 &
    pct_reads_in_peaks > 40 &
    blacklist_ratio < 0.025 &
    nucleosome_signal < 4 &
    TSS.enrichment > 2
)
brain

## An object of class Seurat 
## 157203 features across 3512 samples within 1 assay 
## Active assay: peaks (157203 features, 0 variable features)
##  2 layers present: counts, data

归一化和线性降维

brain <- RunTFIDF(brain)
brain <- FindTopFeatures(brain, min.cutoff = 'q0')
brain <- RunSVD(object = brain)

在分析中,LSI(线性判别分析)的第一个主成分往往反映的是测序的深度(即技术层面的变异),而非生物学上的变异。如果确实如此,那么在后续的分析中应该将这一成分排除掉。为了判断是否存在这种情况,我们可以通过调用DepthCor()函数来计算每个LSI主成分与测序深度之间的相关性。

DepthCor(brain)
alt

在这里,我们看到第一个 LSI 组件与细胞的计数总数之间存在非常强的相关性,因此我们将在没有该组件的情况下执行下游步骤。

非线性降维和聚类

细胞数据已经被嵌入到一个低维度的空间里,我们可以采用单细胞RNA测序(scRNA-seq)数据常用的分析方法,执行基于图谱的聚类分析,并通过非线性降维技术来进行数据可视化。RunUMAP()、FindNeighbors()和FindClusters()这些功能均集成在Seurat软件包中。

brain <- RunUMAP(
  object = brain,
  reduction = 'lsi',
  dims = 2:30
)
brain <- FindNeighbors(
  object = brain,
  reduction = 'lsi',
  dims = 2:30
)
brain <- FindClusters(
  object = brain,
  algorithm = 3,
  resolution = 1.2,
  verbose = FALSE
)

DimPlot(object = brain, label = TRUE) + NoLegend()
alt

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1795316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【机器学习】使用Stable Diffusion实现潜在空间搜索

1、引言 1.1 潜在空间的概念 潜在空间&#xff08;Latent Space&#xff09;是在机器学习和深度学习中一个重要的概念&#xff0c;它指的是用于表示数据的一种低维空间。这个空间编码了数据中包含的所有有用信息的压缩表示&#xff0c;通常比原始数据空间的维数更低&#xff…

java守护线程介绍

在Java中&#xff0c;守护线程&#xff08;Daemon Thread&#xff09;是一种特殊类型的线程&#xff0c;它在后台默默地运行&#xff0c;为其他线程提供服务。当 JVM 中只剩下守护线程时&#xff0c;JVM 会退出。这意味着&#xff0c;守护线程不应该执行关键的任务&#xff0c;…

COMPUTEX 2024 国际电脑展即将举行,英伟达宣布将Copilot+引入RTX系列设备,赋能游戏本AI助理

COMPUTEX 2024 国际电脑展即将于2024年6月4日至7日在台北南港展览馆1馆及2馆盛大举行。作为业界瞩目的盛会&#xff0c;本次展会不仅吸引了全球各地的科技爱好者&#xff0c;更迎来了AMD CEO苏姿丰博士和NVIDIA首席执行官黄仁勋的精彩演讲。 在展会的开幕之际&#xff0c;图形…

【Python】教你彻底了解Python中的模块和包

​​​​ 文章目录 一、模块的概念1. 导入模块2. 导入特定对象3. 给模块或对象取别名 二、标准库模块1. 常用标准库模块2. 使用示例 三、自定义模块1. 创建模块2. 使用自定义模块 四、包的结构与使用1. 创建包2. 使用包中的模块 五、包的深入使用1. 相对导入2. 子包3. 使用子包…

策略模式+简单工厂

&#x1f347;工厂模式 &#x1f348;工厂模式向策略模式过度——工厂加一个保安 &#x1f34f;策略模式 &#x1f350;策略模式简单工厂 声明本文需要理解多态的基础上才能来学习 欢迎前来学习——继承和多态 学习记录 工厂模式 需要什么就生成什么 // 工厂模式 class Fact…

DP读书:如何使用badge?(开源项目下的标咋用)

最近在冲论坛&#xff0c;很少更一些内容了。但遇到了一个真的有趣的&#xff1a; 开源项目下&#xff0c;蓝蓝绿绿的标是怎么用的呢&#xff1f; 这是我的主页Readme&#xff0c;在看一些NXP的主仓时&#xff0c;突然发现没有这个玩&#xff0c;就自己整了个 再比如我的CSDN专…

php高级之框架源码、宏扩展原理与开发

在使用框架的时候我们经常会看到如下代码 类的方法不会显示地声明在代码里面&#xff0c;而是通过扩展的形式后续加进去&#xff0c;这么做的好处是可以降低代码的耦合度、保证源码的完整性。我自己看着框架源码实现了这个功能。 以下是结果: base代码 index.php <?php…

WPS表格插件方方格子【凑数】功能:选出和等于固定数字的数

文章目录 后来发现可以下载方方格子插件&#xff0c;使用【凑数】功能https://ffcell.lanzouj.com/iwhfc1kjhayh【凑数】快速【凑数】 导师让沾发票&#xff0c;需要选出若干个数额的发票&#xff0c;使它们的和等于一个指定数。不知道怎么办了&#xff0c;查了一下&#xff0c…

【MySQL】数据库入门基础

文章目录 一、数据库的概念1. 什么是数据库2. 主流数据库3. mysql和mysqld的区别 二、MySQL基本使用1. 安装MySQL服务器在 CentOS 上安装 MySQL 服务器在 Ubuntu 上安装 MySQL 服务器验证安装 2. 服务器管理启动服务器查看服务器连接服务器停止服务器重启服务器 3. 服务器&…

三十九、openlayers官网示例Extent Interaction解析——在地图上绘制范围并获取数据

官网demo 地址&#xff1a; Extent Interaction 在openlayers中可以使用ExtentInteraction添加交互事件&#xff0c;配合shiftKeyOnly实现按住shift键绘制边界区域。 const map new Map({layers: [new TileLayer({source: new OSM(),}),],target: "map",view: new …

【贡献度分析(帕累托图)】

文章目录 前言一、贡献度分析是什么&#xff1f;二、使用步骤1. 准备数据2. 排序数据3. 绘制帕累托图4. 分析结果5. 实际应用 三、示例代码 前言 贡献度分析也称为帕累托分析。它可以帮助我们理解数据集中各个因素对整体影响的程度&#xff0c;从而优先处理最重要的因素&#…

oracle数据库通过impdp导入数据时提示,ORA-31684:对象类型用户xxx已存在,和ORA-39151:表xxx存在的解决办法

前提条件&#xff1a;首先备份原数据库中此用户对应的schemas 比如名为cams_wf的schemas 以便出了问题后还可以恢复原数据。 解决办法一、 通过命令或者数据库管理工具删除掉此schemas下的所有表&#xff0c;然后在impdp中加入ignorey 来忽略ORA-31684&#xff1a;对象类型用…

分享一个 .Net core Console 项目使用 SqlSugar 的详细例子

前言 SqlSugar 是一款老牌的 .NET 开源 ORM 框架&#xff0c;性能高&#xff0c;功能全面&#xff0c;使用简单&#xff0c;支持 .NET FrameWork、.NET Core3.1、.NET5、.NET6、.NET7、.NET8、.NET9 等版本&#xff0c;线上论坛非常活跃&#xff0c;今天给大伙分享一个 .Net c…

SCARA机器人中旋转花键的维护和保养方法!

作为精密传动元件的一种&#xff0c;旋转花键在工作过程中承受了较大的负荷。在自动化设备上运用广泛&#xff0c;如&#xff1a;水平多关节机械手臂&#xff08;SCARA&#xff09;、产业用机器人、自动装载机、雷射加工机、搬运装置、机械加工中心的ATC装置等&#xff0c;最适…

services层和controller层

services层 我的理解&#xff0c;services层是编写逻辑代码语句最多的一个层&#xff0c;非常重要&#xff0c;在实际的项目中&#xff0c;负责调用Dao层中的mybatis&#xff0c;在我的项目中它调用的是这两个文件 举例代码如下 package com.example.sfdeliverysystem.servic…

K8s资源管理Dashboard的搭建

一、准备 接上篇k8s集群搭建&#xff1a; https://blog.csdn.net/FORLOVEHUAN/article/details/139493668?spm1001.2014.3001.5501 Dashboard是官方提供的一个UI&#xff0c;可用于基本管理K8s资源。 与k8s版本对应关系&#xff1a; https://github.com/kubernetes/dashboard…

LLama2源码分析——Rotary Position Embedding分析

参考&#xff1a;一文看懂 LLaMA 中的旋转式位置编码&#xff08;Rotary Position Embedding&#xff09; 原理推导参考自上文&#xff0c;以下结合huggingface代码分析公式计算过程 1 旋转角度计算 计算公式如下&#xff0c;其中d为词嵌入维度&#xff0c;这部分和论文原文…

Vue——监听器简单使用与注意事项

文章目录 前言编写简单demo注意事项 前言 监听器&#xff0c;在官网中称为侦听器&#xff0c;个人还是喜欢称之为监听器。官方文档如下&#xff1a; vue 官网 侦听器 编写简单demo 侦听器在项目中通常用于监听某个属性变量值的变化&#xff0c;并根据该变化做出一些处理操作。…

冯喜运:6.7今日黄金原油行情分析及独家操作策略

【黄金消息面分析】&#xff1a;周三&#xff08;6月5日&#xff09;&#xff0c;金价回升逾1.2%&#xff0c;收盘报每盎司2,355.49美元&#xff0c;全面收复前一交易日的跌幅。周三当天前公布的美国民间就业数据弱于预期&#xff0c;增强了美联储将在今年晚些时候降息的预期&a…

AI大数据处理与分析实战--体育问卷分析

AI大数据处理与分析实战–体育问卷分析 前言&#xff1a;前一段时间接了一个需求&#xff0c;使用AI进行数据分析与处理&#xff0c;遂整理了一下大致过程和大致简要结果&#xff08;更详细就不方便放了&#xff09;。 文章目录 AI大数据处理与分析实战--体育问卷分析一、数据…