语音深度鉴伪识别项目实战:基于深度学习的语音深度鉴伪识别算法模型(三)音频去噪算法大全+Python源码应用

news2024/12/26 13:57:38

前言

深度学习技术在当今技术市场上面尚有余力和开发空间的,主流落地领域主要有:视觉,听觉,AIGC这三大板块。

目前视觉板块的框架和主流技术在我上一篇基于Yolov7-LPRNet的动态车牌目标识别算法模型已有较为详细的解说。与AIGC相关联的,其实语音模块在近来市场上面活跃空间很大。

从智能手机的语音助手到智能家居中的语音控制系统,再到银行和电信行业的语音身份验证,语音技术的应用日益广泛。那么对应现在ACG技术是可以利用原音频去进行训练学习,从而得到相对应的声音特征,从而进行模仿,甚至可以利用人工智能生成的语音可以以假乱真,给社会带来了严重的安全隐患。

当前,语音深度鉴伪识别技术已经取得了一定的进展。研究人员利用机器学习和深度学习方法,通过分析语音信号的特征,开发出了一系列鉴伪算法。

然而,随着生成大模型和其他语音合成技术的不断进步,伪造语音的逼真度也在不断提高,使得语音鉴伪任务变得愈加复杂和具有挑战性。本项目系列文章将从最基础的语音数据存储和详细分析开始,由于本系列专栏是有详细解说过深度学习和机器学习内容的,音频数据处理和现主流技术语音分类模型和编码模型将会是本项目系列文章的主体内容,具体本项目系列要讲述的内容可参考下图:
在这里插入图片描述语音模型的内容不是那么好掌握的,包含大量的数学理论知识以及大量的计算公式原理需要推理。且如果不进行实际操作很难够理解我们写的代码究极在神经网络计算框架中代表什么作用。不过我会尽可能将知识简化,转换为我们比较熟悉的内容。

我将尽力让大家了解并熟悉神经网络框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练这些知识。希望有需求的小伙伴不要错过笔者精心打造的专栏。

上篇文章详细解答了部份音频噪音种类和效果,以及频谱减法(Spectral Subtraction)和自适应滤波(Adaptive Filtering),接下来我们需要继续了解小波变换去噪(Wavelet Transform Denoising)和维纳滤波(Wiener Filter)进行去噪算法结尾。

小波变换去噪(Wavelet Transform Denoising)

小波变换是一种能够同时在时域和频域中对信号进行分析的技术。它利用小波函数对信号进行多尺度分解,能够有效地捕捉信号的局部特征和突变点。在去噪应用中,小波变换被广泛应用于处理各种类型的信号,如语音信号、图像、医学信号等。

详细步骤

1. 小波分解

对信号进行小波分解,可以得到不同尺度上的逼近系数和细节系数。公式如下:

在这里插入图片描述

其中, ϕ j 0 k ϕ_{j_{0}k} ϕj0k是尺度函数, ψ j , k \psi_{j,k} ψj,k 是小波函数, c j v , k c_{j_v,k} cjv,k d j , k d_{j,k} dj,k​ 分别是尺度系数和细节系数。

2. 阈值处理

对细节系数进行阈值处理,去除噪声。常见的阈值处理方法有:

  • 硬阈值(Hard Thresholding):将小于阈值的系数置为零。

在这里插入图片描述

  • 软阈值(Soft Thresholding):将小于阈值的系数置为零,大于阈值的系数按一定规则缩小。

在这里插入图片描述

硬阈值是一种简单的置零的方法,而软阈值对于大于阈值的小波系数作了"收缩",即都减去阈值,从而使输入-输出曲线变成连续的。在阈值选选取上,人们普遍使用软阈值。改进的阈值是硬阈值和软阈值之间的一个折中,即当小波系数小于阈值时,不是简单地置为零,而是平滑地减小为零,当大于阈值时,小波系数幅度都减去阈值。这样,既保证了大的小波系数,又保证了加阈值后系数的平滑过渡。

阈值的选取

在小波变换去噪过程中,阈值选择至关重要,直接影响去噪效果。常用的阈值选择方法包括通用阈值(Universal Threshold)和自适应阈值。下面详细介绍这两种方法的计算逻辑。

1. 通用阈值(Universal Threshold)

通用阈值是由Donoho和Johnstone提出的一种简单有效的阈值选择方法。通用阈值的计算公式如下:
λ = σ 2 l o g ( n ) λ=σ\sqrt {2log(n)} λ=σ2log(n)
其中:

  • σ \sigma σ​ 是噪声标准差。

    • 估计噪声标准差:通常使用高频细节系数(如小波分解后的最后一级细节系数)的中值绝对偏差(MAD)来估计噪声标准差。

    • σ = m e d i a n ( ∣ d ∣ ) 0.6745 σ= \frac{median(∣d∣)}{0.6745} σ=0.6745median(d)

      sigma = np.median(np.abs(coeffs[-level])) / 0.6745
      
  • n n n​ 是信号的长度。

2.自适应阈值(SURE Thresholding)

自适应阈值(SURE,Stein’s Unbiased Risk Estimate)方法通过最小化估计风险(误差)来选择阈值。SURE方法可以针对不同尺度的系数单独选择阈值,更加灵活。

计算每个尺度的阈值:对于每个尺度的系数,计算一个最佳阈值。

计算SURE值:计算不同阈值下的SURE值,选择使SURE值最小的阈值。

def calculate_sure_threshold(coeff):
    n = len(coeff)
    sorted_coeff = np.sort(np.abs(coeff))
    risks = np.zeros(n)
    for i in range(n):
        t = sorted_coeff[i]
        risk = (n - 2 * (i + 1) + np.sum(np.minimum(coeff**2, t**2))) / n
        risks[i] = risk
    best_threshold = sorted_coeff[np.argmin(risks)]
    return best_threshold

3. 小波重构

对处理后的系数进行逆小波变换,重构信号。逆变换公式与分解公式相反,利用处理后的系数进行信号重建。

# 小波重构
denoised_signal = pywt.waverec(coeffs_thresh, wavelet)

整体去噪代码:

def wavelet_denoising(signal, wavelet='db1', level=1, thresholding='soft'):
    # 小波分解
    coeffs = pywt.wavedec(signal, wavelet, level=level)
    
    # 计算阈值
    universal_threshold = calculate_universal_threshold(coeffs)
    
    # 阈值处理
    coeffs_thresh = []
    for i, c in enumerate(coeffs):
        if i == 0:  # 保留逼近系数
            coeffs_thresh.append(c)
        else:
            # 使用SURE阈值处理细节系数
            sure_threshold = calculate_sure_threshold(c)
            if thresholding == 'hard':
                coeffs_thresh.append(pywt.threshold(c, sure_threshold, mode='hard'))
            elif thresholding == 'soft':
                coeffs_thresh.append(pywt.threshold(c, sure_threshold, mode='soft'))
    
    # 小波重构
    denoised_signal = pywt.waverec(coeffs_thresh, wavelet)
    return denoised_signal


def calculate_universal_threshold(coeffs):
    # 使用高频细节系数估计噪声标准差
    sigma = np.median(np.abs(coeffs[-1])) / 0.6745
    # 计算通用阈值
    threshold = sigma * np.sqrt(2 * np.log(len(coeffs[-1])))
    return threshold

def calculate_sure_threshold(coeff):
    n = len(coeff)
    if n == 0:
        return 0
    sorted_coeff = np.sort(np.abs(coeff))
    risks = np.zeros(n)
    for i in range(n):
        t = sorted_coeff[i]
        risk = (n - 2 * (i + 1) + np.sum(np.minimum(coeff**2, t**2))) / n
        risks[i] = risk
    best_threshold = sorted_coeff[np.argmin(risks)]
    return best_threshold

在这里插入图片描述

听音频效果去噪能力还是一般,比原音频要更加清晰一点。

维纳滤波(Wiener Filter)

维纳滤波(Wiener Filter)是由诺伯特·维纳提出的一种线性滤波方法,旨在通过最小化输出信号与期望信号之间的均方误差(MSE)来实现信号的去噪和估计。维纳滤波在时域和频域中都可以应用,是信号处理、图像处理等领域中的一种经典方法。

维纳滤波的核心思想是利用信号和噪声的统计特性,设计一个滤波器,使得滤波后的输出信号与期望信号之间的均方误差最小。算法逻辑可以分为四个步骤:

1.建模
  • 假设观测信号 x ( t ) x(t) x(t) 是真实信号 s ( t ) s(t) s(t)与噪声 n ( t ) n(t) n(t) 的叠加,即$ x(t)=s(t)+n(t)$。

  • 假设噪声 n ( t ) n(t) n(t)​是一个零均值的白噪声,且与信号 s ( t ) s(t) s(t) 互不相关。

2.频域表达
  • 将信号转换到频域,利用傅里叶变换,将维纳滤波器设计为频域滤波器。
3.维纳滤波器设计
  • 维纳滤波器的频域表达式为:
    H ( f ) = S s ( f ) S s ( f ) + S n ( f ) H(f)=\frac{S_{s}(f)}{S_{s}(f)+S_{n}(f)} H(f)=Ss(f)+Sn(f)Ss(f)
    其中, S s ( f ) S_{s}(f) Ss(f) S n ( f ) S_{n}(f) Sn(f)分别是信号和噪声的功率谱密度。
4.应用滤波器
  • 对观测信号应用维纳滤波器,得到估计的真实信号。
频域维纳滤波

在这里插入图片描述

计算信号和噪声的功率谱密度

  • 使用傅里叶变换计算观测信号的功率谱密度。
  • 使用估计方法或先验知识获取噪声的功率谱密度。

计算维纳滤波器的频域表达式

  • 根据信号和噪声的功率谱密度,计算维纳滤波器的频域表达式。

滤波和逆变换

  • 对观测信号进行傅里叶变换。
  • 应用维纳滤波器进行频域滤波。
  • 对滤波后的信号进行逆傅里叶变换,得到时域中的去噪信号。
def wiener_filter(noisy_signal, sample_rate, noise_power_spectrum):
    # 计算观测信号的功率谱密度
    f, Pxx = scipy.signal.welch(noisy_signal, sample_rate, nperseg=1024)
    
    # 估计信号的功率谱密度(假设信号与噪声独立,且噪声功率谱密度已知)
    signal_power_spectrum = np.maximum(Pxx - noise_power_spectrum, 1e-8)
    
    # 计算维纳滤波器的频域表达式
    H_wiener = signal_power_spectrum / (signal_power_spectrum + noise_power_spectrum)
    
    # 对观测信号进行傅里叶变换
    noisy_signal_fft = np.fft.fft(noisy_signal)
    
    # 对维纳滤波器进行频域插值
    H_wiener_interp = np.interp(np.fft.fftfreq(len(noisy_signal)), f, H_wiener)
    
    # 应用维纳滤波器进行频域滤波
    filtered_signal_fft = noisy_signal_fft * H_wiener_interp
    
    # 对滤波后的信号进行逆傅里叶变换
    filtered_signal = np.fft.ifft(filtered_signal_fft).real
    
    return filtered_signal

其中使用该算法前提条件需要计算出噪音的功率谱密度。噪声功率谱密度(Power Spectral Density, PSD)是描述噪声信号在频域中的能量分布的重要工具。在实际应用中,噪声功率谱密度通常需要根据观测到的噪声信号进行估计。我们可以通过自适应方法,通过统计分析或基于模型的方法估计噪声功率谱密度,适用于信号和噪声混合较复杂的情况。

def adaPtive_noisy(file,noise_estimation_duration=1.0):
    # 读取含噪信号音频文件
    noisy_signal, sample_rate = sf.read(file)

    # 使用Welch方法计算含噪信号的功率谱密度
    frequencies, Pxx  = scipy.signal.welch(noisy_signal, sample_rate, nperseg=10000)
    
    # 估计噪声功率谱密度
    noise_frames = int(noise_estimation_duration * sample_rate / 512)
    noise_power_spectrum = np.mean(Pxx[:noise_frames])

    # 可视化噪声功率谱密度
    plt.figure()
    plt.semilogy(frequencies, noise_power_spectrum)
    plt.title('Estimated Noise Power Spectral Density')
    plt.xlabel('Frequency [Hz]')
    plt.ylabel('Power Spectral Density [V^2/Hz]')
    plt.show()
    
    return noise_power_spectrum

那么音频各类去噪算法就先编码实现到此,后续我们可以根据不同的业务场景和需求来开展不同去噪效果的小型应用,而且也可以作为音视频直播或实现语音实时去噪效果。那么下一章节我们开始研究音频最为主要的特征以及对应含义,我们应该如何运用这些特征,如何通过特征来看透wav数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1793571.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1104 天长地久(测试点1,2,3)

solution 测试点3超时:直接暴力搜超时。m和m1的最大公约数一定是1,则A的个位一定是9才有可能gcd(m, m1)大于1,步长变为10。测试点1,3:m和n的最大公约数是大于2的素数测试点2:按照n从小到大排序&#xff0c…

【spring】第一篇 IOC和DI入门案例

Spring到底是如何来实现IOC和DI的,那接下来就通过一些简单的入门案例,来演示下具体实现过程。 目录 前期准备 一、IOC入门案例 思路分析 代码实现 二、DI入门案例 思路分析 代码实现 总结 前期准备 使用IDEA创建Maven项目,首先需要配…

STM32 SPI驱动读取LSM6DSRTR

提示:通过SPI驱动读取传感器数据 文章目录 前言一、LSM6DSRTR二、配置步骤1.配置SPI2.引入 LSM驱动库3.结果 总结 前言 制作一个倾角传感器,通过SPI读取LSM6DSRTR的加速度数据转换为角度,不用IIC的原因是考虑IIC通讯的协议过于繁琐&#xff…

软件测试报告实际案例模板(项目测试文档doc原件)

软件测试报告在软件开发过程中起着至关重要的作用,主要有以下几个主要原因: 1、确保软件质量 2、提供决策支持 3、记录测试过程和结果 4、促进沟通和协作 5、符合标准和法规要求 6、改进测试流程和策略 7、降低风险 软件开发全套资料获取进主页或者本文末…

vue3使用vue3-print-nb打印

打印效果 1.下载插件 Vue2.0版本安装方法 npm install vue-print-nb --saveVue3.0版本安装方法: npm install vue3-print-nb --save2.main.js引入 vue2引入 import Print from vue-print-nb Vue.use(Print)vue3引入 import print from vue3-print-nb // 打印…

如何组织基于Sqlalchemy的项目

在使用 SQLAlchemy 构建项目时,可以遵循一些常用的组织结构和最佳实践,以确保项目清晰、易于维护。下面就是我在构建项目时遇到的一些问题,并做了详细的记录,为了方便大家学习少走一些弯路。 1、问题背景 在基于Sqlalchemy的项目…

超过600万用户的专业且强悍的数据恢复软件

一、简介 1、是一款由苏州开心盒子软件有限公司研发的专业数据恢复软件,旨在帮助用户解决各种数据丢失问题。它支持多种数据恢复场景,包括但不限于误删除文件恢复、回收站清空文件恢复、U盘、硬盘、SD卡等各类存储设备数据恢复。 二、下载 1、下载地址&a…

【漏洞复现】SpringBlade tenant/list SQL 注入漏洞

0x01 产品简介 SpringBlade ,是一个由商业级项目升级优化而来的 SpringCloud 分布式微服务架构、SpingBoot 单体式微服务架构并存的综合型项目。 0x02 漏洞概述 SpringBlade 后台框架 /api/blade-system/tenantist路径存在SQL注入漏洞,攻击者除了可以利用 SQL 注…

【计算机毕业设计】353微信小程序零食批发交易管理系统

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

如何通过防中毒U盘,实现网络隔离下高密文件传输的安全性?

随着网络安全和数据安全的重视程度增加,越来越多的企业在网络建设时进行了网络隔离,通过网闸、防火墙、VLAN隔离等方式,隔离成内外网,甚至更多细分的网络。但原有的文件和数据传输需求,并不会因为网络的隔离而消失&…

Java大厂面试题第2季

一、本课程前提要求和说明 面试题1: 面试题2: 面试题3: 面试题4: 面试题5: 高频最多的常见笔试面试题目 ArrayList HashMap 底层是什么东东 JVM/GC 多线程与高并发 java集合类

1808java教材交易管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java教材交易管理系统 是一套完善的web设计系统,对理解JSP java编程开发语言有帮助采用了java设计,系统具有完整的源代码和数据库,系统采用web模式,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&…

买卖股票的各种最佳时机问题

买卖股票的最佳时机 分析 根据题意可知,我们只需要找出来一个最小价格的股票和一个最大价格的股票,并且最小价格的股票出现在最大价格的股票之前。 如果尝试使用暴力解法,时间复杂度为O(N^2),对于题目中给的长度,显然…

[数据集][目标检测]电力工地场景下的人头检测数据集VOC+YOLO格式7035张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):7035 标注数量(xml文件个数):7035 标注数量(txt文件个数):7035 标注…

(打印表格)编写程序,显示以下表格:

public class HelloWorld {public static void main(String []args) {System.out.println("a a^2 a^3");int i;for(i0;i<4;i){int j1;System.out.println(j j*j j*j*j);j;}} } 运行结果&#xff1a;

java框架树结构实现(带层级、编码、排序)

1、需求 实现一个影像资料库的功能&#xff0c;用树结构对资料进行分类 2、数据结构 通过id、pid表示父子关系 通过code表示层级关系 通过layer表示层级 通过sort进行排序 3、实体类 package org.jeecg.modules.image.entity;import com.baomidou.mybatisplus.annotation…

SQLAlchemy 模型中数据的错误表示

1. 问题背景 在使用 SQLAlchemy 0.6.0 版本&#xff08;也曾尝试使用 0.6.4 版本&#xff09;的 Pylons 应用程序中遇到了一个 SQLAlchemy ORM 问题。该问题出现在使用 psycopg2 作为数据库驱动程序、连接至 Postgresql 8.2 数据库的环境中。定义了一个 User 模型对象&#xf…

Java17 --- Mabbitmq之安装测试

目录 一、拉取运行镜像 1.1、拉取镜像环境 1.2、运行镜像 二、工作模式 2.1、消息的发送者 2.2、消息的接收者 2.3、生产队列模式 2.3.1、消息的发送者 2.3.2、消息的接收者 2.4、发布订阅模式 2.4.1、消息的发送者 2.4.2、消息的接收者 2.5、路由模式 2.5.…

记一次 .NET某工控视觉自动化系统 卡死分析

一&#xff1a;背景 1. 讲故事 今天分享的dump是训练营里一位学员的&#xff0c;从一个啥也不会到现在分析的有模有样&#xff0c;真的是看他成长起来的&#xff0c;调试技术学会了就是真真实实自己的&#xff0c;话不多说&#xff0c;上windbg说话。 二&#xff1a;WinDbg …

如何从官网下载 mysql 二进制安装包

一.下载二进行包 1. 官网网址: https://www.mysql.com/ 如图所示进入官网 2. 点击 DOWNLOADS ,进入如下图 在该页面找到 MySQL Community (GPL) Downloads 点进去 如上图页面&#xff0c;找到 MySQL Community Server 在点进去 下载 linux 通用版 点击最下面 Compressed …