【新书上市】图像画质算法与底层视觉技术

news2025/1/17 23:26:00

图书主页:https://book.douban.com/subject/36895899/
购买链接:https://item.jd.com/10105601481762.html

在这里插入图片描述

内容介绍

本书主要介绍了图像画质相关的各类底层视觉任务及其相关算法,重点讲解了去噪、超分辨率、去雾、高动态范围、图像合成与图像和谐化、图像增强与图像修饰等多种类型的基础任务的设定及其对应的经典算法和模型。本书讨论了底层视觉任务的基本特征,并从成像过程及图像处理的基础知识出发,系统分析了不同任务下的退化机制,以及对应的算法设计原则。本书在算法选择上兼顾了经典的传统图像算法及当前较新的人工智能模型算法,可以作为从图像处理领域或者深度学习领域进入底层计算机视觉领域进行学习的读者的基础读物。本书主要面向的读者群体包括深度学习与计算机视觉行业的从业人员,计算机、人工智能及其相关专业方向的学生,图像处理相关技术的爱好者与学习者。

目录

第1章 画质算法与底层视觉概述 1
1.1 画质算法的主要任务 1
1.1.1 画质算法定义及其主要类别 1
1.1.2 画质问题的核心:退化 3
1.2 基于深度学习的底层视觉技术 4
1.2.1 深度学习与神经网络 4
1.2.2 底层视觉任务的特点 5
第2章 画质处理的基础知识 7
2.1 光照与成像 7
2.1.1 视觉与光学成像 7
2.1.2 Bayer阵列与去马赛克 15
2.1.3 相机图像信号处理的基本流程 20
2.2 色彩与颜色空间 25
2.2.1 人眼色觉与色度图 25
2.2.2 常见的颜色空间 28
2.3 图像的影调调整方法 32
2.3.1 直方图与对比度 32
2.3.2 对比度拉伸与直方图均衡 35
2.3.3 对比度增强算法的改进策略 39
2.4 图像常见的空间操作 42
2.4.1 基本图像变换:仿射变换与透视变换 42
2.4.2 光流与帧间对齐 50
2.5 图像的频域分析与图像金字塔 54
2.5.1 傅里叶变换与频域分析 54
2.5.2 自然图像的频域统计特性 60
2.5.3 图像金字塔:高斯金字塔与拉普拉斯金字塔 61
第3章 图像与视频去噪算法 66
3.1 噪声的来源与数学模型 66
3.1.1 图像噪声的物理来源 66
3.1.2 噪声的数学模型 68
3.2 去噪算法的难点与策略 76
3.2.1 去噪算法的难点 76
3.2.2 盲去噪与非盲去噪 77
3.2.3 高斯去噪与真实噪声去噪 77
3.2.4 去噪算法的评价指标 78
3.3 传统去噪算法 84
3.3.1 空域滤波:均值、高斯与中值滤波器 84
3.3.2 非局部均值算法 87
3.3.3 小波变换去噪算法 90
3.3.4 双边滤波与导向滤波 96
3.3.5 BM3D滤波算法 104
3.4 深度学习去噪算法 106
3.4.1 深度残差去噪网络DnCNN和FFDNet 106
3.4.2 噪声估计网络去噪:CBDNet 115
3.4.3 小波变换与神经网络的结合:MWCNN 119
3.4.4 视频去噪:DVDNet和FastDVDNet 125
3.4.5 基于Transformer的去噪方法:IPT与SwinIR 132
3.4.6 自监督去噪算法:Noise2Noise、Noise2Void与DIP 138
3.4.7 Raw域去噪策略与算法:Unprocess与CycleISP 142
第4章 图像与视频超分辨率 145
4.1 超分辨率任务概述 146
4.1.1 分辨率与超分辨率任务 146
4.1.2 超分辨率的任务设定与特点 147
4.1.3 超分辨率的评价指标 150
4.2 超分辨率的传统算法 156
4.2.1 上采样插值算法与图像锐化处理 156
4.2.2 基于自相似性的超分辨率 162
4.2.3 基于稀疏编码的超分辨率 164
4.3 经典深度学习超分辨率算法 166
4.3.1 神经网络超分辨率开端:SRCNN和FSRCNN 167
4.3.2 无参的高效上采样:ESPCN 171
4.3.3 无BN层的残差网络:EDSR 173
4.3.4 残差稠密网络 176
4.3.5 针对视觉画质的优化:SRGAN与ESRGAN 178
4.3.6 注意力机制超分辨率网络:RCAN 183
4.3.7 盲超分辨率中的退化估计:ZSSR与KernelGAN 187
4.4 真实世界的超分辨率模型 189
4.4.1 复杂退化模拟:BSRGAN与Real-ESRGAN 189
4.4.2 图像域迁移:CycleGAN类网络与无监督超分辨率 193
4.4.3 扩散模型的真实世界超分辨率:StableSR 196
4.5 超分辨率模型的轻量化 199
4.5.1 多分支信息蒸馏:IMDN与RFDN 199
4.5.2 重参数化策略:ECBSR 206
4.5.3 消除特征冗余:GhostSR 214
4.5.4 单层极轻量化模型:edgeSR 217
4.6 视频超分辨率模型简介 221
4.6.1 视频超分辨率的特点 221
4.6.2 BasicVSR、BasicVSR++与RealBasicVSR 223
4.7 超分辨率模型的优化策略 227
4.7.1 基于分频分区域处理的模型设计 227
4.7.2 针对细节纹理的恢复策略 228
4.7.3 可控可解释的画质恢复与超分辨率 231
第5章 图像去雾 235
5.1 图像去雾任务概述 235
5.1.1 有雾图像的形成与影响 235
5.1.2 有雾图像的退化:大气散射模型 236
5.1.3 去雾算法的主要思路 237
5.2 基于物理模型的去雾算法 238
5.2.1 基于反照系数分解的Fattal去雾算法 238
5.2.2 暗通道先验去雾算法 243
5.2.3 颜色衰减先验去雾算法 248
5.3 深度学习去雾算法 255
5.3.1 端到端的透射图估计:DehazeNet 255
5.3.2 轻量级去雾网络模型:AOD-Net 260
5.3.3 基于GAN的去雾模型:Dehaze cGAN和Cycle-Dehaze 262
5.3.4 金字塔稠密连接网络:DCPDN 264
5.3.5 特征融合注意力去雾模型:FFA-Net 265
第6章 图像高动态范围 277
6.1 图像HDR任务简介 277
6.1.1 动态范围的概念 277
6.1.2 HDR任务分类与关键问题 279
6.2 传统HDR相关算法 280
6.2.1 多曝融合算法 280
6.2.2 局部拉普拉斯滤波算法 285
6.2.3 Reinhard摄影色调重建算法 295
6.2.4 快速双边滤波色调映射算法 301
6.3 基于神经网络模型的HDR算法 306
6.3.1 网络模型的训练目标:MEF-SSIM 306
6.3.2 端到端多曝融合算法:DeepFuse 310
6.3.3 多曝权重的网络计算:MEF-Net 313
6.3.4 注意力机制HDR网络:AHDRNet 317
6.3.5 单图动态范围扩展:ExpandNet 327
第7章 图像合成与图像和谐化 331
7.1 图像合成任务简介 331
7.2 经典图像合成算法 332
7.2.1 alpha通道混合算法 332
7.2.2 多尺度融合:拉普拉斯金字塔融合 334
7.2.3 梯度域的无缝融合:泊松融合 337
7.3 深度学习图像合成与图像和谐化 343
7.3.1 空间分离注意力:S2AM模型 344
7.3.2 域验证的和谐化:DoveNet 348
7.3.3 背景引导的域转换:BargainNet 354
7.3.4 前景到背景的风格迁移:RainNet 357
第8章 图像增强与图像修饰 360
8.1 图像增强任务概述 360
8.2 传统低光增强算法 361
8.2.1 基于反色去雾的低光增强算法 361
8.2.2 多尺度Retinex算法 364
8.3 神经网络模型的增强与颜色调整 369
8.3.1 Retinex理论的模型实现:RetinexNet 370
8.3.2 双边实时增强算法:HDRNet 374
8.3.3 无参考图的低光增强:Zero-DCE 376
8.3.4 可控的修图模型:CSRNet 380
8.3.5 3D LUT类模型:图像自适应3D LUT和NILUT 383
8.3.6 色域扩展:GamutNet和GamutMLP 388 dbf55aa08b383e3a.jpg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1790597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

conflicting types for 错误问题

操作系统真象还原中,第十一章出现的问题: 怎样编译都会出现一个conflicting types for ’xxx‘的错误 出现这个错误的原因: 头文件声明和定义参数稍有不同 头文件中声明 void Hanlder(const char * buf); 在定义时写作 void Hanlder(char…

双指针法 ( 三数之和 )

题目 :给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复…

嵌入式 Linux LED 驱动开发实验学习

I.MX6U-ALPHA 开发板上的 LED 连接到 I.MX6ULL 的 GPIO1_IO03 这个引脚上,进行这个驱动开发实验之前,需要了解下地址映射。 地址映射 MMU 全称叫做 MemoryManage Unit,也就是内存管理单元。在老版本的 Linux 中要求处理器必须有 MMU&#x…

Amazon云计算AWS(一)

目录 一、基础存储架构Dynamo(一)Dynamo概况(二)Dynamo架构的主要技术 二、弹性计算云EC2(一)EC2的基本架构(二)EC2的关键技术(三)EC2的安全及容错机制 提供的…

NXP i.MX8系列平台开发讲解 - 3.14 Linux 之Power Supply子系统(二)

专栏文章目录传送门:返回专栏目录 Hi, 我是你们的老朋友,主要专注于嵌入式软件开发,有兴趣不要忘记点击关注【码思途远】 目录 1. 前言 2. 芯片简介 2. 系统原理设计 2. 设备树相关 本文实操是基于Android11 系统下i.MX8MQ环境下&#x…

DKTCDR:Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation

Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation IEEE(CCF B.SCI 1)-Guoshuai Zhao, Xiaolong Zhang, Hao Tang, Jialie Shen, and Xueming Qian-2024 思路 在CDR中,构建连接两个域的桥梁是实现跨域推荐的基础。然而现在的CDR方法往往在连接两个域时忽…

STM32-- GPIO->EXTI->NVIC中断

一、NVIC简介 什么是 NVIC ? NVIC 即嵌套向量中断控制器,全称 Nested vectored interrupt controller 。它 是内核的器件,所以它的更多描述可以看内核有关的资料。M3/M4/M7 内核都是支持 256 个中断,其中包含了 16 个系统中…

调用smc为什么就能直接切换到ATF?

快速链接: . 👉👉👉Trustzone/TEE/安全 面试100问-目录 👈👈👈 付费专栏-付费课程 【购买须知】:联系方式-加入交流群 ----联系方式-加入交流群 个人博客笔记导读目录(全部) 背景 插播一个小插曲&#…

图片的dpi数值怎么修改?快速在线改图片dpi的操作技巧

在网上报名或者上传个人证件照片时,经常会对图片dpi数值有所要求,需要按照要求将图修改图片dpi到规定数值才可以正常上传,有很多人都对这个问题的感到非常的困扰,那么有什么方法能够快速在线改图片分辨率的dpi数值呢? …

WPF 依赖属性原理、 附加属性

依赖属性如何节约内存 MSDN中给出了下面几种应用依赖属性的场景: 希望可在样式中设置属性。 希望属性支持数据绑定。 希望可使用动态资源引用设置属性。 希望从元素树中的父元素自动继承属性值。 希望属性可进行动画处理。 希望属性系统在属性系统、环境或用户…

Wpf 使用 Prism 开发MyToDo应用程序

MyToDo 是使用 WPF ,并且塔配Prism 框架进行开发的项目。项目中进行了前后端分离设计,客户端所有的数据均通过API接口获取。适合新手入门学习WPF以及Prism 框架使用。 首页统计以及点击导航到相关模块功能待办事项增删改查功能备忘录增删改查功能登录注册…

【Python编程】【Jupyter Notebook】启动时报错:no available port could be found

一、报错描述 在Jupyter Notebook中编写程序,无法运行,提示由于没有可供监听的端口,无法启动Jupyter服务器,如下图所示: 二、原因分析 通过报错信息,猜测大概是由于网络环境的原因。首先,关闭…

智能体应用开发:构建各类垂直领域的ai智能体应用

最近在做个类似的项目,有用到这方面的知识,顺便做一些记录和笔记吧,希望能帮到大家了解智能体应用开发 目录 引言 AI原生应用的兴起 智能体在AI中的角色 实现原理详解 机器学习基础 数据管理与关联数据库 数据结构 Embedding 检索方…

开放式耳机哪个牌子好?2024年度热门机型推荐榜单分享!

随着音乐技术的不断革新,开放式耳机已成为音乐发烧友们的首选。从最初的简单音质,到如今的高清解析,开放式耳机不断进化。音质纯净,佩戴舒适,无论是街头漫步还是家中细细静听,都能带给你身临其境的音乐体验…

电路方案分析(十九)快速响应过流事件检测电路

快速响应过流事件检测电路 1.设计需求2.设计方案3.设计说明4.仿真验证 tips&#xff1a;方案参考来自TI参考设计&#xff0c;仅供学习交流使用。 1.设计需求 2.设计方案 这是一种快速响应单向电流检测解决方案&#xff0c;通常称为过流保护 (OCP)&#xff0c;可提供 < 2μ…

开源模型应用落地-LangSmith试炼-入门初体验-监控和自动化(五)

一、前言 在许多应用程序中&#xff0c;特别是在大型语言模型(LLM)应用程序中&#xff0c;收集用户反馈以了解应用程序在实际场景中的表现是非常重要的。 LangSmith可以轻松地将用户反馈附加到跟踪数据中。通常最好提供一个简单的机制(如赞成和反对按钮)来收集用户对应用程序响…

解决MAC M1 Docker Desktop启动一直在starting

问题描述&#xff1a; 今天使用docker buildx 构建Multi-platform&#xff0c;提示如下错误&#xff1a; ERROR: Multi-platform build is not supported for the docker driver. Switch to a different driver, or turn on the containerd image store, and try again. 于是按…

RTOS笔记--任务状态与调度

任务状态 freertos中的任务分为四个状态&#xff1a;就绪状态&#xff08;ready&#xff09;、运行状态&#xff08;running&#xff09;、阻塞状态&#xff08;blocked&#xff09;、暂停状态&#xff08;suspended&#xff09; 完整的任务状态转换图&#xff1a; 在使用vTas…

短剧市场大爆炸:小米和华为的亿万争夺战,谁能笑到最后?

在数字化媒体的浪潮中&#xff0c;内容消费模式正经历着翻天覆地的变化。短视频的兴起引领了一种全新的娱乐方式&#xff0c;而短剧作为其衍生形式&#xff0c;正逐渐成为各大科技巨头争夺的新战场。 小米和华为&#xff0c;作为中国科技界的两大巨头&#xff0c;也在这一新兴…

Android Studio的Gradle面板里不显示task,build ,assemble 无法出aar包

按照以下方式把对应开关打开就可以正常进行build/assemble进行aar的生成了