LeeCode热题100(爬楼梯)

news2025/1/11 10:19:11

爬楼梯这个题我断断续续看了不下5遍,哪次看都是懵逼的,就会说是满足动态规划,满足斐波那契数列,也不说为什么。

本文一定让你明白怎么分析这个题的规律(利用数学的递推思想来分析),看不懂来打我,但是一定要自己动手画一画台阶写一下

注意:不论是多少个台阶,第一步就只有两种情况是吧:1步跨1个 or 1步跨2个

思路分析(从最后1个台阶倒着分析):

1.在最后1个台阶1种跨法:

2.最后2个台阶有2种跨法:

3.最后3个台阶有3种跨法:

4.最后4个台阶有5种跨法:

注意:上面几个图里面最左边的数字只表示第一步  跨1个台阶 or 1步跨2个台阶(不懂了看下面这个图)

分析最后3个台阶:第一步要么跨1个台阶要么跨2个台阶。当先跨1个台阶时是不是剩下(3-1)个台阶(把跨最后2个台阶的跨法搬过来就行了);当先跨2个台阶时是不是剩下(3-2)个台阶(把跨最后1个台阶的跨法搬过来就行了);

分析最后4个台阶:第一步要么跨1个台阶要么跨2个台阶。当先跨1个台阶时是不是剩下(4-1)个台阶(把跨最后3个台阶的跨法搬过来就行了);当先跨2个台阶时是不是剩下(4-2)个台阶(把跨最后2个台阶的跨法搬过来就行了);

分析最后5个台阶:第一步要么跨1个台阶要么跨2个台阶。当先跨1个台阶时是不是剩下(5-1)个台阶(把跨最后4个台阶的跨法搬过来就行了);当先跨2个台阶时是不是剩下(5-2)个台阶(把跨最后3个台阶的跨法搬过来就行了);

根据数学递推思想可以看出:最后n个台阶的跨法=(n-1)个台阶的跨法+(n-2)个台阶的跨法

既然分析出来与符合斐波那契数列规律是一样的,不妨拿过来斐波那契数列的代码就行了

class Solution {
    public int climbStairs(int n) {
if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
        int[]dp=new int[n+1];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1721501.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络监听技术

网络监听技术 网络监听概述网络监听环境 流量劫持网络环境共享式网络监听原理交换式网络监听交换机的工作方式交换网络监听&#xff1a;交换机集线器交换网络监听&#xff1a;端口镜像交换网络监听&#xff1a;MAC洪泛交换网络监听&#xff1a;MAC洪泛交换网络监听&#xff1a;…

更新详情 | Flutter 3.22 与 Dart 3.4

作者 / Michael Thomsen 过去几个月&#xff0c;Dart & Flutter 部门可谓忙碌非凡&#xff0c;但我们很高兴地宣布&#xff0c;Flutter 3.22 和 Dart 3.4 已经在今年的 Google I/O 大会上精彩亮相&#xff01; Google I/Ohttps://io.google/2024/intl/zh/ 我们始终致力于提…

windows11下将Labelme标注数据转为YOLOV5训练数据集

完整代码&#xff1a; import shutil import os import numpy as np import json from glob import glob import cv2 from sklearn.model_selection import train_test_split from utils.data_dir import root_dirdef convert(size, box):dw 1. / (size[0])dh 1. / (size[1]…

如何仿一个抖音极速版领现金的进度条动画?

效果演示 不仅仅是实现效果&#xff0c;要封装&#xff0c;就封装好 看完了演示的效果&#xff0c;你是否在思考&#xff0c;代码应该怎么实现&#xff1f;先不着急写代码&#xff0c;先想想哪些地方是要可以动态配置的。首先第一个&#xff0c;进度条的形状是不是要可以换&am…

五种主流数据库:常用数据类型

在设计数据库的表结构时&#xff0c;我们需要明确表中包含哪些字段以及字段的数据类型。字段的数据类型定义了该字段能够存储的数据种类以及支持的操作。 本文将会介绍五种主流数据库中常用的数据类型以及如何选择合适的数据类型&#xff0c;包括 MySQL、Oracle、SQL Server、…

零代码本地搭建AI大模型,详细教程!普通电脑也能流畅运行,中文回答速度快,回答质量高...

你好&#xff0c;我是郭震 这篇教程主要解决&#xff1a; 1). 有些读者朋友&#xff0c;电脑配置不高&#xff0c;比如电脑没有配置GPU显卡&#xff0c;还想在本地使用AI&#xff1b; 2). Llama3回答中文问题欠佳&#xff0c;想安装一个回答中文问题更强的AI大模型。 3). 想成为…

汽车IVI中控开发入门及进阶(二十四):杰发科技AC8015

前言: 在此之前的大部分时间,四维图新更多的是以图商的身份在业内出现,但现在四维图新图商之外的技术积累提现在了杰发科技身上,或者是从图商到汽车智能化一体解决方案供应商的角色转变。汽车智能化,可以简单的归为座舱智能化和智能驾驶两个板块。 随着汽车变得越来越智能…

显示器与电脑如何分屏显示?

1.点击电脑屏幕右键--显示设置 2、然后找到屏幕---找到多显示器---选择扩展显示器

重生奇迹MU召唤师如何学习狂暴术?

一、了解狂暴术的基本信息 狂暴术是一种非常强大的技能&#xff0c;可以让召唤师的攻击力和防御力大幅度提高&#xff0c;但同时也会增加自身的伤害。在使用狂暴术之前&#xff0c;召唤师需要仔细考虑自己的状态和对手的情况。 二、学习狂暴术的方法 1.通过任务学习 在游戏…

戴尔科技:一盆冷水浇醒了AIPC

这年头&#xff0c;只要沾上英伟达的公司&#xff0c;不论美股还是大A,都跟着鸡犬升天几轮过&#xff0c;但昨晚英伟达蒸发1064亿美元&#xff0c; 跟着遭罪的也不少&#xff0c;有没有一夜惊魂梦醒的感觉&#xff1f; 今天我们来说说——戴尔科技。 昨晚戴尔科技大跌5.18%&a…

查看VUE3代理后真正请求的URL

在vite.config.ts中添加如下配置&#xff1a; server: {host: "0.0.0.0", // 指定服务器应该监听哪个 IP 地址port: 8848, // 指定开发服务器端口open: true, // 开发服务器启动时&#xff0c;自动在浏览器中打开应用程序cors: true,// Load proxy configuration fr…

建议收藏-各类IT证书查验真伪链接

1、红帽认证证书核验链接&#xff1a; https://rhtapps.redhat.com/verify/ RHCSA认证、RHCE认证、RHCA认证 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 2、华为认证证书核验链接&#xff1a; https://e.huawei.com/cn/talent/#/cert/certificate…

Java进阶学习笔记31——日期时间

Date&#xff1a; 代表的是日期和时间。 分配Date对象并初始化它以表示自标准基准时间&#xff08;称为纪元&#xff09;以来的指定毫秒数&#xff0c;即1970年1月1日00:00:00。 有参构造器。 package cn.ensource.d3_time;import java.util.Date;public class Test1Date {pu…

YOLOv10涨点改进:卷积魔改 | 分布移位卷积(DSConv),提高卷积层的内存效率和速度

💡💡💡本文改进内容: YOLOv10如何魔改卷积进一步提升检测精度?提出了一种卷积的变体,称为DSConv(分布偏移卷积),其可以容易地替换进标准神经网络体系结构并且实现较低的存储器使用和较高的计算速度。 DSConv将传统的卷积内核分解为两个组件:可变量化内核(VQK)和…

打造你的专属Vue组件:超实用“高级筛选弹窗组件“实战

打造你的专属Vue组件&#xff1a;超实用“高级筛选弹窗组件“实战 在现代前端开发中&#xff0c;组件化思想是提高开发效率、维护性和代码复用性的关键。本文将通过一个实例——创建一个自定义的“高级筛选”弹窗组件&#xff0c;来展示如何在Vue框架下利用Composition API和E…

内网安全:横向传递攻击(PTH || PTK || PTT 哈希票据传递)

内网安全&#xff1a;横向传递攻击. 横向移动就是在拿下对方一台主机后&#xff0c;以拿下的那台主机作为跳板&#xff0c;对内网的其他主机再进行后面渗透&#xff0c;利用既有的资源尝试获取更多的凭据、更高的权限&#xff0c;一步一步拿下更多的主机&#xff0c;进而达到控…

Mac电脑pd虚拟机专用windows系统镜像(m1/intel)win10、11镜像文件

入手了Mac电脑后&#xff0c;由于需要用到Windows软件&#xff0c;又嫌安装双系统太复杂&#xff0c;这时候Mac就用到了安装虚拟机&#xff0c;目前最好用的虚拟机是Parallels Desktop&#xff0c;win镜像版本要根据自己的喜好选对&#xff0c;在此提供分别兼容M1和Intel的win1…

WSL2-Ubuntu22.04-配置

WSL2-Ubuntu22.04-配置 准备1. WSL相关命令[^1]2. WSL2-Ubuntu22.04可视化3. WSL2 设置 CUDA4. 设置OpenGL 本文介绍了WSL2的基本使用方法及可视化&#xff0c;着重介绍了GPU和OpenGL的设置。 准备 名称版本windows11wsl2CUDA12.5 1. WSL相关命令1 查看已安装的wsl distribut…

AMS 仿真 ERROR

ERROR (OSSHNL-514): Netlist generation failed because of the errors reported above. The netlist might not have been generated at all, or the generated netlist could be corrupt. Fix the reported errors and regenerate the netlist. 原因&#xff1a;用的incisi…