基于VGG16使用图像特征进行迁移学习的时装推荐系统

news2025/1/22 12:53:31

在这里插入图片描述

前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

利用图像特征提取的时尚推荐系统是一种通过分析时尚物品(如服装、配饰)的视觉内容,向用户推荐类似或互补产品的技术。

本文所提供的数据集由女性时尚物品的图像组成,包括各种服装和配饰。每张图片都代表一件独特的商品,按类型(如连衣裙、上衣、裙子)、风格(如休闲、正式、运动)以及颜色和图案等其他属性进行分类。这些图像以统一格式收集,以方便特征提取和分析过程。主要目标是开发一个时尚推荐系统,该系统可以分析输入的时尚单品图像,并根据视觉相似性从数据集中推荐相似的单品。

  • 提取特征: 利用预先训练好的 CNN 模型(如 VGG16、ResNet)从数据集中的每张图像中提取综合特征,捕捉纹理、颜色和形状等方面。
  • 测量相似性: 采用一种相似性测量方法(如余弦相似性),将提取的输入图像特征与数据集中的图像特征进行定量比较。
  • 推荐单品: 根据相似度得分,识别并推荐与输入单品视觉相似度最高的 N 个单品。

目录

  • 1. 相关数据集
    • 1.1 导入必要库
    • 1.2 加载数据集
  • 2. 构建模型(VGG16)
  • 3. 模型评估
  • 4. 总结

1. 相关数据集

利用图像特征构建时尚推荐系统涉及几个关键步骤,同时利用计算机视觉和机器学习技术。以下是利用图像特征构建时尚推荐系统的详细过程:

  1. 收集各种时尚物品的数据集。该数据集应包括不同颜色、图案、款式和类别的各种物品。
  2. 确保所有图像的格式(如 JPEG、PNG)和分辨率一致。
  3. 执行预处理功能,为特征提取准备图像。
  4. 选择预先训练好的 CNN 模型,如 VGG16、ResNet 或 InceptionV3。这些模型在 ImageNet 等大型数据集上经过预先训练,能够从图像中提取强大的特征表征。
  5. 将每张图像通过 CNN 模型提取特征。
  6. 定义衡量特征向量之间相似性的指标。
  7. 根据与输入图像的相似度对数据集图像进行排序,并推荐最相似的前 N 个项目。
  8. 实现一个最终函数,该函数封装了从预处理输入图像、提取特征、计算相似度到输出推荐的整个过程。

因此,这个过程从收集基于时尚服装的图片数据集开始。您可以从这里下载数据集。

1.1 导入必要库

现在,让我们通过导入必要的 Python 库,开始利用图像特征构建时尚推荐系统

import os
from zipfile import ZipFile

from PIL import Image
import matplotlib.pyplot as plt

import glob
import numpy as np

from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.applications.vgg16 import preprocess_input

1.2 加载数据集

zip_file_path = '/content/women fashion.zip'
extraction_directory = '/content/women_fashion/'

if not os.path.exists(extraction_directory):
    os.makedirs(extraction_directory)

with ZipFile(zip_file_path, 'r') as zip_ref:
    zip_ref.extractall(extraction_directory)

extracted_files = os.listdir(extraction_directory)
print(extracted_files[:10])
['women fashion', '__MACOSX']

在上面的代码中,一个位于 Google Colab 上路径为“/content/women fashion.zip ”的名为 “women fashion.zip ”的压缩文件正在被解压缩到指定目录“/content/women_fashion/”。首先,我们检查提取目录是否存在,如果不存在,则使用 os.makedirs() 创建该目录。然后,使用 Python 的 ZipFile 模块,以读取模式打开 zip 文件,并将其内容解压缩到指定目录。

zip 文件包含一个名为 women fashion 的目录和一些 macOS 使用的元数据 (__MACOSX)。让我们忽略 macOS 元数据,专注于women fashion目录,列出其内容以了解我们所拥有的图片类型和数量:

# correcting the path to include the 'women fashion' directory and listing its contents
extraction_directory_updated = os.path.join(extraction_directory, 'women fashion')

# list the files in the updated directory
extracted_files_updated = os.listdir(extraction_directory_updated)
extracted_files_updated[:10], len(extracted_files_updated)
(['black floral saree.jpg',
  'black, sequined dress with thin shoulder straps.jpg',
  'dark blue, knee-length dress with thin straps.jpg',
  'classic black slip dress with a midi length.jpg',
  'black off-shoulder dress with belt.jpg',
  'white, intricately detailed top and a flowing dark blue skirt.jpg',
  'Women-off-the-shoulder-sexy-embroidery-fashion-party-dress-1.png',
  'fitted, off-the-shoulder white dress with horizontal ribbed texture.jpg',
  'one-shoulder, fitted dress that features sequin embellishments and sheer panels.jpg',
  'fitted, short, yellow dress with short sleeves.jpeg'],
 97)

现在,让我们来看看数据集中的第一张图片:

# function to load and display an image
def display_image(file_path):
    image = Image.open(file_path)
    plt.imshow(image)
    plt.axis('off')
    plt.show()

# display the first image to understand its characteristics
first_image_path = os.path.join(extraction_directory_updated, extracted_files_updated[0])
display_image(first_image_path)

请添加图片描述
现在,我们将创建一个包含所有图像文件路径的列表,用于稍后从数据集中的每张图像中提取特征:

# directory path containing your images
image_directory = '/content/women_fashion/women fashion'

image_paths_list = [file for file in glob.glob(os.path.join(image_directory, '*.*')) if file.endswith(('.jpg', '.png', '.jpeg', 'webp'))]

# print the list of image file paths
print(image_paths_list)

在上述代码中,glob 模块用于生成存储在目录中的图像的文件路径列表。glob.glob 函数搜索与指定模式匹配的文件,在本例中为*.*,它匹配目录中的所有文件。然后,列表理解会过滤这些文件,只包含具有特定图像文件扩展名(.jpg、.png、.jpeg、.webp)的文件。它确保 image_paths_list 只包含图像文件的路径,而不包括目录中可能存在的任何其他文件类型。

2. 构建模型(VGG16)

现在,我们将从所有时尚图像中提取特征:

base_model = VGG16(weights='imagenet', include_top=False)
model = Model(inputs=base_model.input, outputs=base_model.output)

def preprocess_image(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    img_array = image.img_to_array(img)
    img_array_expanded = np.expand_dims(img_array, axis=0)
    return preprocess_input(img_array_expanded)

def extract_features(model, preprocessed_img):
    features = model.predict(preprocessed_img)
    flattened_features = features.flatten()
    normalized_features = flattened_features / np.linalg.norm(flattened_features)
    return normalized_features

all_features = []
all_image_names = []

for img_path in image_paths_list:
    preprocessed_img = preprocess_image(img_path)
    features = extract_features(model, preprocessed_img)
    all_features.append(features)
    all_image_names.append(os.path.basename(img_path))
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5
58889256/58889256 [==============================] - 0s 0us/step
1/1 [==============================] - 1s 715ms/step
1/1 [==============================] - 0s 486ms/step
1/1 [==============================] - 0s 463ms/step
1/1 [==============================] - 1s 623ms/step
1/1 [==============================] - 1s 840ms/step
1/1 [==============================] - 1s 747ms/step
1/1 [==============================] - 1s 583ms/step
1/1 [==============================] - 0s 463ms/step
1/1 [==============================] - 0s 463ms/step
1/1 [==============================] - 0s 471ms/step
1/1 [==============================] - 1s 509ms/step
1/1 [==============================] - 0s 457ms/step
1/1 [==============================] - 0s 474ms/step
1/1 [==============================] - 0s 459ms/step
1/1 [==============================] - 0s 481ms/step
1/1 [==============================] - 0s 465ms/step
1/1 [==============================] - 0s 486ms/step
1/1 [==============================] - 1s 678ms/step
1/1 [==============================] - 1s 846ms/step
1/1 [==============================] - 1s 1s/step
1/1 [==============================] - 1s 760ms/step
1/1 [==============================] - 1s 810ms/step
1/1 [==============================] - 1s 832ms/step
1/1 [==============================] - 1s 796ms/step
1/1 [==============================] - 1s 598ms/step
1/1 [==============================] - 0s 461ms/step
1/1 [==============================] - 0s 472ms/step
1/1 [==============================] - 0s 461ms/step
1/1 [==============================] - 0s 477ms/step
1/1 [==============================] - 0s 481ms/step
1/1 [==============================] - 0s 473ms/step
1/1 [==============================] - 0s 466ms/step
1/1 [==============================] - 0s 476ms/step
1/1 [==============================] - 0s 468ms/step
1/1 [==============================] - 0s 479ms/step
1/1 [==============================] - 0s 471ms/step
1/1 [==============================] - 1s 605ms/step
1/1 [==============================] - 1s 548ms/step
1/1 [==============================] - 1s 679ms/step
1/1 [==============================] - 1s 703ms/step
1/1 [==============================] - 1s 596ms/step
1/1 [==============================] - 1s 1s/step
1/1 [==============================] - 1s 1s/step
1/1 [==============================] - 1s 590ms/step
1/1 [==============================] - 0s 462ms/step
1/1 [==============================] - 0s 482ms/step
1/1 [==============================] - 0s 464ms/step
1/1 [==============================] - 0s 470ms/step
1/1 [==============================] - 0s 484ms/step
1/1 [==============================] - 0s 467ms/step
1/1 [==============================] - 0s 483ms/step
1/1 [==============================] - 0s 464ms/step
1/1 [==============================] - 0s 481ms/step
1/1 [==============================] - 0s 463ms/step
1/1 [==============================] - 0s 479ms/step
1/1 [==============================] - 0s 464ms/step
1/1 [==============================] - 0s 499ms/step
1/1 [==============================] - 0s 466ms/step
1/1 [==============================] - 1s 735ms/step
1/1 [==============================] - 1s 894ms/step
1/1 [==============================] - 2s 2s/step
1/1 [==============================] - 1s 1s/step
1/1 [==============================] - 1s 852ms/step
1/1 [==============================] - 1s 912ms/step
1/1 [==============================] - 1s 1s/step
1/1 [==============================] - 1s 908ms/step
1/1 [==============================] - 1s 871ms/step
1/1 [==============================] - 1s 1s/step
1/1 [==============================] - 1s 579ms/step
1/1 [==============================] - 0s 471ms/step
1/1 [==============================] - 0s 462ms/step
1/1 [==============================] - 0s 466ms/step
1/1 [==============================] - 1s 574ms/step
1/1 [==============================] - 1s 807ms/step
1/1 [==============================] - 1s 809ms/step
1/1 [==============================] - 1s 608ms/step
1/1 [==============================] - 0s 460ms/step
1/1 [==============================] - 0s 467ms/step
1/1 [==============================] - 0s 468ms/step
1/1 [==============================] - 0s 463ms/step
1/1 [==============================] - 0s 474ms/step
1/1 [==============================] - 0s 478ms/step
1/1 [==============================] - 0s 477ms/step
1/1 [==============================] - 0s 469ms/step
1/1 [==============================] - 0s 475ms/step
1/1 [==============================] - 0s 463ms/step
1/1 [==============================] - 0s 479ms/step
1/1 [==============================] - 0s 462ms/step
1/1 [==============================] - 0s 485ms/step
1/1 [==============================] - 0s 471ms/step
1/1 [==============================] - 0s 480ms/step
1/1 [==============================] - 0s 462ms/step
1/1 [==============================] - 0s 476ms/step
1/1 [==============================] - 0s 466ms/step
1/1 [==============================] - 1s 692ms/step
1/1 [==============================] - 1s 848ms/step

最初加载的 VGG16 模型不包含顶层分类层(include_top = False),因此适合用于特征提取而非分类。

在上述代码中,使用 VGG16 模型(一种在 ImageNet 数据集上预先训练过的流行卷积神经网络)实现了特征提取过程,从存储在 image_path_list 中的图像中提取视觉特征。来自 image_paths_list 的每个图像路径都要经过一系列步骤处理:加载图像并将其大小调整为 224×224 像素,以符合 VGG16 输入大小的要求,将其转换为 NumPy 数组,并进行预处理以适应模型的预期输入格式。

然后将预处理后的图像输入 VGG16 模型以提取特征,随后对其进行扁平化和归一化处理,从而为每张图像创建一致的特征向量。这些特征向量(all_features)及其对应的图像文件名(all_image_names)被存储起来,为下一步利用图像特征建立时尚推荐系统提供了结构化数据集。

3. 模型评估

现在,我将编写一个函数,根据图片特征推荐时尚图片:

from scipy.spatial.distance import cosine

def recommend_fashion_items_cnn(input_image_path, all_features, all_image_names, model, top_n=5):
    # pre-process the input image and extract features
    preprocessed_img = preprocess_image(input_image_path)
    input_features = extract_features(model, preprocessed_img)

    # calculate similarities and find the top N similar images
    similarities = [1 - cosine(input_features, other_feature) for other_feature in all_features]
    similar_indices = np.argsort(similarities)[-top_n:]

    # filter out the input image index from similar_indices
    similar_indices = [idx for idx in similar_indices if idx != all_image_names.index(input_image_path)]

    # display the input image
    plt.figure(figsize=(15, 10))
    plt.subplot(1, top_n + 1, 1)
    plt.imshow(Image.open(input_image_path))
    plt.title("Input Image")
    plt.axis('off')

    # display similar images
    for i, idx in enumerate(similar_indices[:top_n], start=1):
        image_path = os.path.join('/content/women_fashion/women fashion', all_image_names[idx])
        plt.subplot(1, top_n + 1, i + 1)
        plt.imshow(Image.open(image_path))
        plt.title(f"Recommendation {i}")
        plt.axis('off')

    plt.tight_layout()
    plt.show()

在上述代码中,我们定义了一个 recommend_fashion_items_cnn 函数,该函数通过基于深度学习的特征提取,向用户推荐与给定输入图片相似的时尚单品。它利用 VGG16 模型从图像中提取高维特征向量,捕捉图像的视觉本质。

对于指定的输入图像,该函数会对图像进行预处理,提取其特征,并计算该特征向量与数据集中其他图像特征向量(all_features)之间的余弦相似度。它根据相似度对这些图像进行排序,并选择前 N 个最相似的图像进行推荐,同时通过从相似指数列表中过滤掉输入图像的指数,明确排除将输入图像推荐给自己的可能性。

最后,该函数将通过显示输入图片及其推荐来实现可视化。

现在,我们来看看如何使用此函数,根据输入图片中的相似方式推荐图片:

input_image_path = '/content/women_fashion/women fashion/dark, elegant, sleeveless dress that reaches down to about mid-calf.jpg'
recommend_fashion_items_cnn(input_image_path, all_features, image_paths_list, model, top_n=4)

时尚图片描述
您只需将图像路径作为输入,就会看到类似的时尚建议图片作为输出。

4. 总结

因此,这就是如何使用 Python 编程语言,利用图像特征构建时尚推荐系统。使用图像特征的时尚推荐系统利用计算机视觉和机器学习技术来分析时尚产品的视觉方面(如颜色、纹理和风格),并向用户推荐类似或互补的产品。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1719172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AutoMQ 自动化持续测试平台技术内幕

01 背景 AutoMQ[1] 作为一款流系统,被广泛应用在客户的核心链路中,对可靠性的要求非常的高。所以我们需要一套模拟真实生产场景、长期运行的测试环境,在注入各种故障场景的前提下验证 SLA 的可行性,为新版本的发布和客户的使用提…

c# - 运算符 << 不能应用于 long 和 long 类型的操作数

Compiler Error CS0019 c# - 运算符 << 不能应用于 long 和 long 类型的操作数 处理方法 特此记录 anlog 2024年5月30日

【论文精读】SAM

摘要 本文提出Segment Anything&#xff08;SA&#xff09;&#xff0c;一个可prompt的视觉分割模型&#xff0c;通过一个 能实现视觉特征强大泛化的任务在包含大量图像的数据集上对模型进行预 训练&#xff0c;旨在通过使用prompt工程解决新数据 分布上的一系列下游分割问题。…

深入了解diffusion model

diffusion model是如何运作的 会输入当时noise的严重程度&#xff0c;根据我们的输入来确定在第几个step&#xff0c;并做出不同的回应。 Denoise模组内部实际做的事情 产生一张图片和产生noise难度是不一样的&#xff0c;若denoise 模块产生一只带噪声的猫说明这个模块已经会…

【Python】 Python中的递增和递减操作符:简单易懂的指南

基本原理 在Python中&#xff0c;递增&#xff08;increment&#xff09;和递减&#xff08;decrement&#xff09;操作符是用于快速增加或减少变量值的快捷方式。这些操作符在很多编程语言中都有出现&#xff0c;它们提供了一种方便的方式来对变量进行自增&#xff08;&#…

【JavaEE进阶】——带你详细了解Spring日志以及配置日志

目录 &#x1f6a9;Spring日志的认识 &#x1f6a9;Spring日志的作用 &#x1f6a9;观察日志 &#x1f6a9;使用日志 &#x1f388;在程序中得到日志对象 &#x1f388;使⽤⽇志对象输出要打印的内容 &#x1f6a9;日志框架的介绍 &#x1f388;门面模式(外观模式&…

鸿蒙ArkTS声明式开发:跨平台支持列表【透明度设置】 通用属性

透明度设置 设置组件的透明度。 说明&#xff1a; 开发前请熟悉鸿蒙开发指导文档&#xff1a; gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版…

GIS Java 生成四至图

目录 前言 操作步骤&#xff1a; 1&#xff0c;求出多边形的四至点 2&#xff0c;下载地图 3&#xff0c;绘制多边形 前言 对于地图上的一个多边形地块&#xff0c;其四至图就是能够覆盖这个多边形的最小矩形&#xff0c;也就是求出这个多边形的最东点&#xff0c;最西点&…

如何从浅入深理解transformer?

前言 在人工智能的浩瀚海洋中&#xff0c;大模型目前无疑是其中一颗璀璨的明星。从简单的图像识别到复杂的自然语言处理&#xff0c;大模型在各个领域都取得了令人瞩目的成就。而在这其中&#xff0c;Transformer模型更是成为大模型技术的核心。 一、大模型的行业发展现状如…

AI实时免费在线图片工具3:人物换脸、图像编辑

1、FaceAdapter 人物换脸 https://huggingface.co/spaces/FaceAdapter/FaceAdapter 2、InstaDrag https://github.com/magic-research/InstaDrag

M-G364PD惯性测量单元:相机及微小层面的革命性应用

在现代科技飞速发展的今天&#xff0c;精准控制和精确测量是众多高端设备实现卓越性能的关键。爱普生推出的M-G364PD惯性测量单元&#xff08;IMU&#xff09;&#xff0c;因其卓越的性能和微小尺寸&#xff0c;成为相机以及其他微小层面应用的理想选择&#xff0c;为科技创新提…

实现计算器的基本操作:加减乘除与百分数

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言 二、加减乘除的实现 1. 操作数与操作符 2. 逻辑处理 3. 示例代码 三、求百分数…

vue3 setup 使用 beforeRouteEnter 组件内路由守卫

vue3 setup 使用 beforeRouteEnter 组件内路由守卫 setup 中只有onBeforeRouteLeave、onBeforeRouteUpdate两个钩子函数&#xff0c; 没有beforeRouteEnter对应的钩子函数&#xff0c;所以无法在setup中直接使用 <script setup> onBeforeRouteLeave((to, from) > {// …

曹凯自然歌唱法·歌唱真谛说在罗浮山罗浮院子开讲

在追求梦想、享受音乐的道路上&#xff0c;每个人都渴望找到属于自己的声音&#xff0c;释放内心的情感。2024年5月18日&#xff0c;广东省发展中医药事业基金会与广州曹凯自然歌唱法学会携手在罗浮院子举行了隆重的挂牌仪式&#xff0c;同时“刷新声乐教育与演绎模式&#xff…

Golang | Leetcode Golang题解之第119题杨辉三角II

题目&#xff1a; 题解&#xff1a; func getRow(rowIndex int) []int {row : make([]int, rowIndex1)row[0] 1for i : 1; i < rowIndex; i {row[i] row[i-1] * (rowIndex - i 1) / i}return row }

Spring Boot 整合 spring-boot-starter-mail 实现邮件发送和账户激活

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…

销量逆袭!敦煌店铺如何靠自养号测评轻松引爆市场?

对于众多卖家而言&#xff0c;踏入中国领先的B2B跨境电商平台&#xff0c;如同步入了充满无尽机会的金矿。然而&#xff0c;有些卖家在平台上努力经营&#xff0c;但订单却寥寥无几。那么&#xff0c;究竟是什么原因导致了这种情况&#xff1f;接下来&#xff0c;我们将结合实际…

chrome谷歌浏览器开启Gemini Nano模型

前提 确保您的操作系统语言设置为英语(美国) 可能还需要将 Chrome 浏览器的语言更改为英语(美国)。 下载dev或Canary版本Chrome Chrome Canary Chrome Dev 注意:确认您的版本高于 127.0.6512.0。 其中一个Chrome版本不行就切换另外一个版本 绕过性能检查 Tab输入: …

java基础-chapter15(io流)

io流&#xff1a;存储和读取数据的解决方案 I:input O:output io流的作用&#xff1a;用于读写数据&#xff08;本地文件,网络&#xff09; io流按照流向可以分为&#xff1a; 输出流&#xff1a;程序->文件 输入流&#xff1a;文件->程序 io流按照操作文件…

跨境电商如何收款?6大常用收款方式对比!

收款是跨境中关键的一环&#xff0c;选择一个安全、高效、成本合理的收款工具很重要。每个跨境人都要先想好选择合适的收款方式&#xff0c;今天就给跨境人们总结了6个主流的跨境收款工具&#xff0c;大家可以根据自己的实际情况进行对比选择。 1、PayPal 适用平台&#xff1a;…