OpenMV学习笔记2——颜色识别

news2024/11/15 7:00:54

目录

一、打开单颜色识别实例代码

二、代码基础部分

 三、阈值选择

四、给识别到的颜色画框

五、多颜色识别 


 

一、打开单颜色识别实例代码

如图,双击打开对应文件即可进入实例代码。

二、代码基础部分

# Single Color RGB565 Blob Tracking Example
#
# This example shows off single color RGB565 tracking using the OpenMV Cam.

import sensor
import time
import math

threshold_index = 0  # 0 for red, 1 for green, 2 for blue

# Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max)
# The below thresholds track in general red/green/blue things. You may wish to tune them...
thresholds = [
    (30, 100, 15, 127, 15, 127),  # generic_red_thresholds
    (30, 100, -64, -8, -32, 32),  # generic_green_thresholds
    (0, 30, 0, 64, -128, 0),      # generic_blue_thresholds
]  

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time=2000)
sensor.set_auto_gain(False)  # must be turned off for color tracking
sensor.set_auto_whitebal(False)  # must be turned off for color tracking
clock = time.clock()

# Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are
# returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the
# camera resolution. "merge=True" merges all overlapping blobs in the image.

while True:
    clock.tick()
    img = sensor.snapshot()
    for blob in img.find_blobs(
        [thresholds[threshold_index]],
        pixels_threshold=200,
        area_threshold=200,
        merge=True,
    ):
        # These values depend on the blob not being circular - otherwise they will be shaky.
        if blob.elongation() > 0.5:
            img.draw_edges(blob.min_corners(), color=(255, 0, 0))
            img.draw_line(blob.major_axis_line(), color=(0, 255, 0))
            img.draw_line(blob.minor_axis_line(), color=(0, 0, 255))
        # These values are stable all the time.
        img.draw_rectangle(blob.rect())
        img.draw_cross(blob.cx(), blob.cy())
        # Note - the blob rotation is unique to 0-180 only.
        img.draw_keypoints(
            [(blob.cx(), blob.cy(), int(math.degrees(blob.rotation())))], size=20
        )
    print(clock.fps())

首先,还是要先导入所依赖的库,有“sensor”、“time”和“math”。 

代码的第九行定义了一个名为“threshold_index”的变量,注释上写明了0代表红色,1代表绿色,2代表蓝色。直接跳到13行代码可以看到,这里定义了一个成员为元组的列表,每个元组有六个值,分别代表了LAB的三个最大值与最小值,组合在一起即可表示一个颜色。每行后面的注释都写明了所代表的颜色。

注:LAB指的是一种特殊的颜色模式,Lab颜色模型由三个要素组成,一个要素是亮度(L),a 和b是两个颜色通道。a包括的颜色是从深绿色(低亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);b是从亮蓝色(低亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种颜色混合后将产生具有明亮效果的色彩。

 在循环中,我们通过“thresholds[threshold_index]”的方式来访问设定好的颜色中的某个成员的LAB参数。

接下来19~22行代码是重置感光元件、重置摄像机;设置颜色格式为RGB565;图像大小为QVGA;跳过2000帧使设置生效。这些都是上节见过的代码,这里不再赘述。

需要注意的是,在颜色识别中一定要关闭白平衡和自动增益,如果打开的话会影响颜色识别的效果,可能会使颜色的阈值发生改变。也就是23、24两行代码所代表的意思。

然后我们进入while循环。“img = sensor.snapshot”首先截取感光元件的一张图片,接下来在“img.find_blobs”这个函数中进行颜色识别。这个函数会返回一个列表,以下是函数原型:

image.find_blobs(thresholds, roi=Auto, x_stride=2, y_stride=1, invert=False, area_threshold=10, pixels_threshold=10, merge=False, margin=0, threshold_cb=None, merge_cb=None)

 可以看到,该函数有如下参数(以下内容来自官方文档):

  • thresholds是颜色的阈值,注意:这个参数是一个列表,可以包含多个颜色。如果你只需要一个颜色,那么在这个列表中只需要有一个颜色值,如果你想要多个颜色阈值,那这个列表就需要多个颜色阈值。注意:在返回的色块对象blob可以调用code方法,来判断是什么颜色的色块。
red = (xxx,xxx,xxx,xxx,xxx,xxx)
blue = (xxx,xxx,xxx,xxx,xxx,xxx)
yellow = (xxx,xxx,xxx,xxx,xxx,xxx)

img=sensor.snapshot()
red_blobs = img.find_blobs([red])

color_blobs = img.find_blobs([red,blue, yellow])
  • roi是“感兴趣区”。在使用统计信息中已经介绍过了。

    left_roi = [0,0,160,240]
    blobs = img.find_blobs([red],roi=left_roi)

  • x_stride 就是查找的色块的x方向上最小宽度的像素,默认为2,如果你只想查找宽度10个像素以上的色块,那么就设置这个参数为10:

    blobs = img.find_blobs([red],x_stride=10)

  • y_stride 就是查找的色块的y方向上最小宽度的像素,默认为1,如果你只想查找宽度5个像素以上的色块,那么就设置这个参数为5:

    blobs = img.find_blobs([red],y_stride=5)

  • invert 反转阈值,把阈值以外的颜色作为阈值进行查找

  • area_threshold 面积阈值,如果色块被框起来的面积小于这个值,会被过滤掉

  • pixels_threshold 像素个数阈值,如果色块像素数量小于这个值,会被过滤掉

  • merge 合并,如果设置为True,那么合并所有重叠的blob为一个。
    注意:这会合并所有的blob,无论是什么颜色的。如果你想混淆多种颜色的blob,只需要分别调用不同颜色阈值的find_blobs。

all_blobs = img.find_blobs([red,blue,yellow],merge=True)

red_blobs = img.find_blobs([red],merge=True)
blue_blobs = img.find_blobs([blue],merge=True)
yellow_blobs = img.find_blobs([yellow],merge=True)
  • margin 边界,如果设置为1,那么两个blobs如果间距1一个像素点,也会被合并。

 三、阈值选择

 打开如图所示的位置,在弹出的窗口中选择帧缓冲区,即可在摄像头捕捉到的画面内调整LAB的阈值。调整滑块,可以看到右边对应的图像也在做出变化。

 在弹出窗口的下方有一个LAB阈值的栏,右键即可复制当前滑块位置下的LAB阈值。

初次之外,我们也可以使用右下角的图像直方图来进行颜色阈值的选择。我们在下拉三角中选择LAB色彩空间,之后在右上角的图像中框出一个框框来,可以看到下面的直方图也在发生变化。

这里我们只需要按照顺序,将L的最小最大、a的最小最大、b的最小最大填进去,就写好了一个新的阈值。

如果我们不框住任何色块,下方的直方图就显示的是整个图像的色彩。

四、给识别到的颜色画框

代码中的“blob”是函数“find_blobs”所返回的对象列表,它包含以下内容(以下内容来自官方文档):

  • blob.rect() 返回这个色块的外框——矩形元组(x, y, w, h),可以直接在image.draw_rectangle中使用。

  • blob.x() 返回色块的外框的x坐标(int),也可以通过blob[0]来获取。

  • blob.y() 返回色块的外框的y坐标(int),也可以通过blob[1]来获取。

  • blob.w() 返回色块的外框的宽度w(int),也可以通过blob[2]来获取。

  • blob.h() 返回色块的外框的高度h(int),也可以通过blob[3]来获取。

  • blob.pixels() 返回色块的像素数量(int),也可以通过blob[4]来获取。

  • blob.cx() 返回色块的外框的中心x坐标(int),也可以通过blob[5]来获取。

  • blob.cy() 返回色块的外框的中心y坐标(int),也可以通过blob[6]来获取。

  • blob.rotation() 返回色块的旋转角度(单位为弧度)(float)。如果色块类似一个铅笔,那么这个值为0~180°。如果色块是一个圆,那么这个值是无用的。如果色块完全没有对称性,那么你会得到0~360°,也可以通过blob[7]来获取。

  • blob.code() 返回一个16bit数字,每一个bit会对应每一个阈值。举个例子:

    blobs = img.find_blobs([red, blue, yellow], merge=True)

如果这个色块是红色,那么它的code就是0001,如果是蓝色,那么它的code就是0010。注意:一个blob可能是合并的,如果是红色和蓝色的blob,那么这个blob就是0011。这个功能可以用于查找颜色代码。也可以通过blob[8]来获取。

  • blob.count() 如果merge=True,那么就会有多个blob被合并到一个blob,这个函数返回的就是这个的数量。如果merge=False,那么返回值总是1。也可以通过blob[9]来获取。

  • blob.area() 返回色块的外框的面积。应该等于(w * h)

  • blob.density() 返回色块的密度。这等于色块的像素数除以外框的区域。如果密度较低,那么说明目标锁定的不是很好。
    比如,识别一个红色的圆,返回的blob.pixels()是目标圆的像素点数,blob.area()是圆的外接正方形的面积。

“img.draw_rectangle(blob.rect())”意思是如果识别到了制定的颜色,我们就在这个色块周围画一个框框把它圈出来。“img.draw_cross(blob.cx(), blob.cy())”意思是在色框中间画一个十字,blob.cx()与blob.cy()指的是色块的中心位置坐标。

我们也可以在循环中加一句“print(blob)”来获取所有blob参数,运行结果如下:

{"x":0, "y":198, "w":23, "h":42, "pixels":329, "cx":8, "cy":218, "rotation":1.690989, "code":1, "count":1, "perimeter":257, "roundness":0.199382}

五、多颜色识别 

在循环中,我们可以将第36行代码改写成“[thresholds],” ,也就是删掉后面的“[threshold_index],”,此时再次运行可以看到红、蓝、绿三种颜色都被框选显示了出来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1715031.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaWeb基础(一)-IO操作

Java I/O工作机制: 注:简要笔记,示例代码可能较少,甚至没有。 1、Java 的 I/O 类库的基本架构。 ​ Java 的 I/O 操作类在包 java.io 下,大概有将近80个类,这些类大概可以分为如下四组。 基于字节操作的…

mysql中InnoDB的统计数据

大家好。我们知道,mysql中存在许多的统计数据,比如通过SHOW TABLE STATUS 可以看到关于表的统计数据,通过SHOW INDEX可以看到关于索引的统计数据,那么这些统计数据是怎么来的呢?它们是以什么方式收集的呢?今…

LLAMA3==shenzhi-wang/Llama3-8B-Chinese-Chat。windows安装不使用ollama

创建环境: conda create -n llama3_env python3.10 conda activate llama3_env conda install pytorch torchvision torchaudio cudatoolkit11.7 -c pytorch 安装Hugging Face的Transformers库: pip install transformers sentencepiece 下载模型 ht…

海尔智家牵手罗兰-加洛斯,看全球创牌再升级

晚春的巴黎西郊,古典建筑群与七叶树林荫交相掩映,坐落于此的罗兰加洛斯球场内座无虚席。 来自全球各地的数万观众,正与场外街道上的驻足者们一起,等待着全世界最美好的网球声响起…… 当地时间5月26日,全球四大职业网…

大模型时代的具身智能系列专题(五)

stanford宋舒然团队 宋舒然是斯坦福大学的助理教授。在此之前,他曾是哥伦比亚大学的助理教授,是Columbia Artificial Intelligence and Robotics Lab的负责人。他的研究聚焦于计算机视觉和机器人技术。本科毕业于香港科技大学。 主题相关作品 diffusio…

代码随想录-Day23

669. 修剪二叉搜索树 方法一&#xff1a;递归 class Solution {public TreeNode trimBST(TreeNode root, int low, int high) {if (root null) {return null;}if (root.val < low) {return trimBST(root.right, low, high);} else if (root.val > high) {return trimBS…

爪哇,我初学乍道

>>上一篇&#xff08;学校上课&#xff0c;是耽误我学习了。。&#xff09; 2016年9月&#xff0c;我大二了。 自从我发现上课会耽误我学习&#xff0c;只要我认为不影响我期末学分的&#xff0c;我就逃课了。 绝大多数课都是要签到的&#xff0c;有的是老师突击喊名字…

YOLO-10更快、更强

YOLO-10简介 主要贡献&#xff1a; 无NMS的一致双分配 YOLOv10提出了一种通过双标签分配而不用非极大值抑制NMS的策略。这种方法结合了一对多和一对一分配策略的优势&#xff0c;提高了效率并保持了性能。 高效的网络设计 轻量化分类头&#xff1a;在不显著影响性能的情况下&a…

618数码产品怎么选?四大必看推荐,自费无广测评

6.18盛宴即将开启&#xff0c;你是否已摩拳擦掌&#xff0c;准备在电商海洋中乘风破浪&#xff1f;然而&#xff0c;在繁多的商品和错综复杂的优惠面前&#xff0c;你是否感到些许迷茫&#xff1f;团团这位网购小能手&#xff0c;特地为大家梳理了一份精选购物清单。这些宝贝不…

搭建YOLOv10环境 训练+推理+模型评估

文章目录 前言一、环境搭建必要环境1. 创建yolov10虚拟环境2. 下载pytorch (pytorch版本>1.8)3. 下载YOLOv10源码4. 安装所需要的依赖包 二、推理测试1. 将如下代码复制到ultralytics文件夹同级目录下并运行 即可得到推理结果2. 关键参数 三、训练及评估1. 数据结构介绍2. 配…

2024.05.29学习记录

1、css面经复习 2、代码随想录二刷 3、rosebush upload组件初步完成

【芯片验证方法】

术语——中文术语 大陆与台湾的一些术语存在差别&#xff1a; 验证常用的英语术语&#xff1a; 验证&#xff1a;尽量模拟实际应用场景&#xff0c;比对芯片的所需要的目标功能和实现的功能 影响验证的要素&#xff1a;应用场景、目标功能、比对应用场景、目标功能&#xff…

OpenAI新模型开始训练!GPT6?

国内可用潘多拉镜像站GPT-4o、GPT-4&#xff08;更多信息请加Q群865143845&#xff09;: 站点&#xff1a;https://xgpt4.ai0.cn/ OpenAI 官网 28 日发文称&#xff0c;新模型已经开始训练&#xff01; 一、新模型开始训练 原话&#xff1a;OpenAI has recently begun training…

性能大爆炸!为你的Matomo换一个高性能的环境!

随着我的 Matomo 越来越大&#xff0c;功能需求的增多&#xff0c;插件也变得越来越多&#xff0c;使用传统的LNMP架构或者LAMP架构都会发现性能正在急剧下级&#xff0c;为此&#xff0c;我们发现了使用FrankenPHP&#xff08;以下简称FPHP&#xff09;的方案 首先&#xff0…

【本地运行chatgpt-web】启动前端项目和service服务端项目,也是使用nodejs进行开发的。两个都运行成功才可以使用!

1&#xff0c;启动web界面 https://github.com/Chanzhaoyu/chatgpt-web#node https://nodejs.org/en/download/package-manager # 使用nvm 安装最新的 20 版本。 curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash source /root/.bashrc n…

攀爬二叉树,发现新的美

二叉树 什么是二叉树? 二叉树的基础概念? 性质? 问题? 文章目录 二叉树一、二叉树的概念(一)认识二叉树(二)二叉树的性质 二、遍历二叉树1.前序遍历2.中序遍历3.后序遍历4.层序遍历 三丶创建二叉树总结 一、二叉树的概念 (一)认识二叉树 二叉树是一种非线性的数据结构,…

一篇文章讲透排序算法之快速排序

前言 本篇博客难度较高&#xff0c;建议在学习过程中先阅读一遍思路、浏览一遍动图&#xff0c;之后研究代码&#xff0c;之后仔细体会思路、体会动图。之后再自己进行实现。 一.快排介绍与思想 快速排序相当于一个对冒泡排序的优化&#xff0c;其大体思路是先在文中选取一个…

鸿蒙课程培训 | 讯方技术与鸿蒙生态服务公司签约,成为鸿蒙钻石服务商

3月15日&#xff0c;深圳市讯方技术股份有限公司与鸿蒙生态服务公司签署合作协议&#xff0c;讯方技术成为鸿蒙钻石服务商&#xff0c;正式进军鸿蒙原生应用培训开发领域。讯方技术总裁刘国锋、副总经理刘铭皓、深圳区域总经理张松柏、深圳区域交付总监张梁出席签约仪式。 作…

基于51单片机的交通灯设计

一.硬件方案 本设计能模拟基本的交通控制系统&#xff0c;用红绿黄灯表示禁行&#xff0c;通行和等待的信号发生&#xff0c;还能进行倒计时显示。按键可以控制禁行、深夜模式、复位、东西通行、南北通行、时间加、时间减、切换等功能。共四个二位阴极数码管&#xff0c;东南西…

【busybox记录】【shell指令】unlink

目录 内容来源&#xff1a; 【GUN】【unlink】指令介绍 【busybox】【unlink】指令介绍 【linux】【unlink】指令介绍 使用示例&#xff1a; 删除文件 - 默认 常用组合指令&#xff1a; 指令不常用/组合用法还需继续挖掘&#xff1a; 内容来源&#xff1a; GUN &#x…