垃圾判断
垃圾介绍
垃圾:如果一个或多个对象没有任何的引用指向它了,那么这个对象现在就是垃圾
作用:释放没用的对象,清除内存里的记录碎片,碎片整理将所占用的堆内存移到堆的一端,以便 JVM 将整理出的内存分配给新的对象
垃圾收集主要是针对堆和方法区进行,程序计数器、虚拟机栈和本地方法栈这三个区域属于线程私有的,只存在于线程的生命周期内,线程结束之后就会消失,因此不需要对这三个区域进行垃圾回收
在堆里存放着几乎所有的 Java 对象实例,在 GC 执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象。只有被标记为己经死亡的对象,GC 才会在执行垃圾回收时,释放掉其所占用的内存空间,因此这个过程可以称为垃圾标记阶段,判断对象存活一般有两种方式:引用计数算法和可达性分析算法
引用计数法
引用计数算法(Reference Counting):对每个对象保存一个整型的引用计数器属性,用于记录对象被引用的情况。对于一个对象 A,只要有任何一个对象引用了 A,则 A 的引用计数器就加 1;当引用失效时,引用计数器就减 1;当对象 A 的引用计数器的值为 0,即表示对象A不可能再被使用,可进行回收(Java 没有采用)
优点:
-
回收没有延迟性,无需等到内存不够的时候才开始回收,运行时根据对象计数器是否为 0,可以直接回收
-
在垃圾回收过程中,应用无需挂起;如果申请内存时,内存不足,则立刻报 OOM 错误
-
区域性,更新对象的计数器时,只是影响到该对象,不会扫描全部对象
缺点:
-
每次对象被引用时,都需要去更新计数器,有一点时间开销
-
浪费 CPU 资源,即使内存够用,仍然在运行时进行计数器的统计。
-
无法解决循环引用问题,会引发内存泄露(最大的缺点)
public class Test {
public Object instance = null;
public static void main(String[] args) {
Test a = new Test();// a = 1
Test b = new Test();// b = 1
a.instance = b; // b = 2
b.instance = a; // a = 2
a = null; // a = 1
b = null; // b = 1
}
}
可达性分析
-
Java虚拟机中的垃圾回收器采用可达性分析来探索所有存活的对象
-
扫描堆中的对象,看是否能够沿着GC Root对象为起点的引用链找到该对象,找不到,表示可以回收
-
那么哪些对象可以作为GC Root呢?
GC Roots
可达性分析算法:也可以称为根搜索算法、追踪性垃圾收集
GC Roots 对象:
-
虚拟机栈中局部变量表中引用的对象:各个线程被调用的方法中使用到的参数、局部变量等
-
本地方法栈中引用的对象
-
堆中类静态属性引用的对象
-
方法区中的常量引用的对象
-
字符串常量池(string Table)里的引用
-
同步锁 synchronized 持有的对象
GC Roots 是一组活跃的引用,不是对象,放在 GC Roots Set 集合
工作原理
可达性分析算法以根对象集合(GCRoots)为起始点,从上至下的方式搜索被根对象集合所连接的目标对象
分析工作必须在一个保障一致性的快照中进行,否则结果的准确性无法保证,这也是导致 GC 进行时必须 Stop The World 的一个原因
基本原理:
-
可达性分析算法后,内存中的存活对象都会被根对象集合直接或间接连接着,搜索走过的路径称为引用链
-
如果目标对象没有任何引用链相连,则是不可达的,就意味着该对象己经死亡,可以标记为垃圾对象
-
在可达性分析算法中,只有能够被根对象集合直接或者间接连接的对象才是存活对象