深度学习之CNN卷积神经网络

news2025/1/9 3:51:26

一.卷积神经网络

1. 导入资源包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import tensorflow as tf
from tensorflow import keras

:from tensorflow import keras:从TensorFlow库中导入Keras模块,它是TensorFlow的一个高级API,用于构建和训练神经网络。Keras提供了一个简洁的接口,使得构建复杂的神经网络变得更加容易。

2.数据导入与数据观察

from sklearn.datasets import load_sample_image

#由于图像的像素值通常在0255之间,这里将其缩放到[0, 1]的范围,以便于后续处理和可视化。
china = load_sample_image("china.jpg") / 255  
flower = load_sample_image("flower.jpg") / 255
plt.subplot(1,2,1)
plt.imshow(china)
plt.subplot(1,2,2)
plt.imshow(flower)

运行结果
在这里插入图片描述
:这段代码使用了Scikit-learn库来加载两个示例图像,并将它们调整为[0, 1]的灰度值范围,然后使用Matplotlib库将这两个图像分别显示在一个2x1的子图中。

2.1.打印出两个图像的维度

print("china.jpg的维度:",china.shape)
print("flower.jpg的维度:",flower.shape)

运行结果
在这里插入图片描述
:由于图像数据通常是一个NumPy数组,其形状表示为高度、宽度和通道数(如果图像有多个通道的话)。这里,china.shape将返回一个元组,表示图像的形状。

2.2.将两个图像数组组合成一个NumPy数组,并打印出形状。

images = np.array([china,flower])
images_shape = images.shape
print("数据集的维度:",images_shape)

运行结果
在这里插入图片描述
:images = np.array([china,flower]):这行代码将两个图像数组(china和flower)作为列表的元素,并使用NumPy的array函数将它们组合成一个多维数组。这个数组可能包含两个图像,每个图像是一个二维数组(高度 x 宽度)。

3.卷积层

u = 7 #卷积核的边长
s = 1 #滑动步长
p = 5 #输入特征图数目

conv = keras.layers.Conv2D(filters = p, kernel_size = u, strides = s,
                          padding = "SAME", activation="relu", input_shape=images_shape)

image_after_conv = conv(images)
print("卷积后的张量大小:", image_after_conv.shape)

#activation = "relu":指定激活函数为ReLU

运行结果
在这里插入图片描述
:这段代码定义了一个二维卷积层(Conv2D),并将这个卷积层应用于一个名为images的NumPy数组。代码中的参数u、s和p分别表示卷积核的边长、滑动步长和输入特征图的数量。

4.汇聚层

4.1.最大汇聚

pool_max = keras.layers.MaxPool2D(pool_size=2)
#这行代码将image_after_conv张量作为输入传递给最大汇聚层pool_max,并计算汇聚操作后的输出。
image_after_pool_max = pool_max(image_after_conv)
print("最大汇聚后的张量大小:",image_after_pool_max.shape)

运行结果
在这里插入图片描述
:这段代码定义了一个最大汇聚层(MaxPool2D),并将这个汇聚层应用于之前通过卷积层(Conv2D)处理过的图像张量(image_after_conv)。代码中的参数pool_size定义了汇聚操作的窗口大小。

4.2.平均汇聚

pool_avg = keras.layers.AvgPool2D(pool_size=2)
image_after_pool_avg = pool_avg(image_after_conv)
print("平均汇聚后的张量大小:",image_after_pool_avg.shape)

运行结果
在这里插入图片描述
:平均汇聚层通常用于减少特征图的大小,同时保留重要信息。通过将窗口内的值进行平均,平均汇聚层可以捕捉到图像中的关键特征。汇聚操作后,输出特征图的尺寸会减小,但每个元素都是通过计算窗口内所有元素的平均值得到的,因此保留了更多的上下文信息。

4.3.全局平均汇聚

pool_global_avg = keras.layers.GlobalAvgPool2D()
image_after_pool_global_avg = pool_global_avg(image_after_conv)
print("全局平均汇聚后的张量大小:",image_after_pool_global_avg.shape)

运行结果
在这里插入图片描述
:这段代码定义了一个全局平均汇聚层(GlobalAvgPool2D),并将这个汇聚层应用于之前通过卷积层(Conv2D)处理过的图像张量(image_after_conv)。全局平均汇聚层会在整个输入特征图上执行平均汇聚操作,这意味着它会将输入特征图的每个元素都除以特征图的总元素数,以计算每个特征的平均值。

5.搭建卷积神经网络进行手写数字识别

5.1.导入并对数据进行预处理

train_Data = pd.read_csv('mnist_train.csv',header = None) #训练数据
test_Data = pd.read_csv('mnist_test.csv',header = None)  #测试数据

X, y = train_Data.iloc[:,1:].values/255, train_Data.iloc[:,0].values #数据归一化

X_valid, X_train = X[:5000].reshape(5000,28,28) , X[5000:].reshape(55000,28,28) #验证集与训练集
y_valid, y_train = y[:5000], y[5000:]

X_test,y_test = test_Data.iloc[:,1:].values.reshape(10000,28,28)/255, test_Data.iloc[:,0].values #测试集
print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)

运行结果
在这里插入图片描述
:这段代码的输出将显示各个数据集的形状,即它们的样本数量和每个样本的特征维度。对于MNIST数据集,每个样本是一个28x28的图像,因此每个样本有784个特征(28*28)。

5.2.扩张为四维张量

X_train = X_train[..., np.newaxis]
X_valid = X_valid[...,np.newaxis]
X_test = X_test[...,np.newaxis]

print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)

运行结果
在这里插入图片描述
:将这些数据集的形状从(样本数量, 高度, 宽度)扩展为(样本数量, 高度, 宽度, 通道数)。这是为了匹配卷积神经网络(CNN)的输入要求,其中通道数通常是1(对于灰度图像)或3(对于RGB彩色图像)。

5.3.搭建卷积神经网络

#搭建模型
model_cnn_mnist = keras.models.Sequential([
    keras.layers.Conv2D(32, kernel_size=3, padding="same", activation="relu"),
    keras.layers.Conv2D(64, kernel_size=3, padding="same", activation="relu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Flatten(),
    keras.layers.Dropout(0.25),
    keras.layers.Dense(128, activation="relu"),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(10, activation="softmax")
])

#评估性能
model_cnn_mnist.compile(loss="sparse_categorical_crossentropy",optimizer="nadam",metrics=["accuracy"])
model_cnn_mnist.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))

运行结果
在这里插入图片描述

第一层卷积层:使用32个大小的卷积核
第二层卷积层:使用64个大小的卷积核
第三层汇聚层:将所有特征映射的维度缩小至原先一半
第四层是平展层:将原先四维张量(55000,14,14,64)平展成两维张量(55000,),即将一个样本的所有参数项平展成一个维度
后续是全连接层

model_cnn_mnist.evaluate(X_test, y_test, batch_size=1)

运行结果
在这里插入图片描述
:使用model_cnn_mnist.evaluate方法来评估您的卷积神经网络(CNN)模型在MNIST测试集上的性能。这个方法将计算模型在测试数据上的损失和指标,这里是准确率。

model_cnn_mnist.summary()

运行结果
在这里插入图片描述
:打印出模型的结构

6.利用函数式API与子类API搭建复杂神经网络

6.1.残差层

class ResidualUnit(keras.layers.Layer):
    def __init__(self, filters, strides=1, activation="relu"):
        super().__init__()
        self.activation = keras.activations.get(activation)
        
        self.main_layers = [
            keras.layers.Conv2D(filters, 3, strides=strides, padding = "SAME", use_bias = False), 
            keras.layers.BatchNormalization(),
            self.activation,
            keras.layers.Conv2D(filters, 3, strides=1, padding = "SAME", use_bias = False),
            keras.layers.BatchNormalization()]
        
        # 当滑动步长s = 1时,残差连接直接将输入与卷积结果相加,skip_layers为空,即实线连接
        self.skip_layers = [] 
        
        # 当滑动步长s = 2时,残差连接无法直接将输入与卷积结果相加,需要对输入进行卷积处理,即虚线连接
        if strides > 1:
            self.skip_layers = [
                keras.layers.Conv2D(filters, 1, strides=strides, padding = "SAME", use_bias = False),
                keras.layers.BatchNormalization()]

    def call(self, inputs):
        Z = inputs
        for layer in self.main_layers:
            Z = layer(Z)
        skip_Z = inputs
        for layer in self.skip_layers:
            skip_Z = layer(skip_Z)
        return self.activation(Z + skip_Z)

:定义了一个名为ResidualUnit的类,它继承自keras.layers.Layer,用于创建残差单元(Residual Unit),这是深度学习中常用的一种网络结构,特别是在残差网络(ResNet)中。残差单元允许网络在深层中传播信息,通过跳跃连接(skip connections)来缓解梯度消失问题,从而使网络能够成功训练更深的层次。

6.2.搭建完整的ResNet-34神经网络

model = keras.models.Sequential()

model.add(keras.layers.Conv2D(64, 7, strides=2, padding = "SAME", use_bias = False))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.MaxPool2D(pool_size=3, strides=2, padding="SAME"))

prev_filters = 64
for filters in [64] * 3 + [128] * 4 + [256] * 6 + [512] * 3:
    strides = 1 if filters == prev_filters else 2   #在每次特征图数目扩展时,设置滑动步长为2
    model.add(ResidualUnit(filters, strides=strides))
    prev_filters = filters
    
model.add(keras.layers.GlobalAvgPool2D())
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(10, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])
model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))

model.evaluate(X_test, y_test, batch_size=1)

运行结果
在这里插入图片描述
:使用了一个循环来添加多个残差单元。残差单元的数量和过滤器数量根据您提供的列表 [64] * 3 + [128] * 4 + [256] * 6 + [512] * 3 来确定。在每次特征图数目扩展时,即从64到128,从128到256,从256到512时,您将步长设置为2,以便在空间维度上进行下采样。

二.总结:前馈神经网络与卷积神经网络的区别

1.结构差异:

前馈神经网络:由输入层、一个或多个隐藏层以及输出层组成,每层之间的神经元完全连接。前馈网络通常用于处理非空间数据,如图像的像素值在输入时会被展平成一维向量。
卷积神经网络:由输入层、一个或多个卷积层、池化层、全连接层以及输出层组成。卷积层和池化层允许网络在处理数据时保留空间结构,因此非常适合处理图像和视频数据。

2.参数效率:

前馈神经网络:由于每层神经元之间的完全连接,前馈网络通常具有大量的参数,这使得网络在训练时更容易过拟合,尤其是在训练数据量有限的情况下。
卷积神经网络:通过权值共享和局部连接,卷积网络大大减少了参数的数量,这使得网络更加高效,并且能够在有限的数据上训练出更好的模型。

3.局部连接:

前馈神经网络:每一层的所有神经元都与上一层的所有神经元相连接。
卷积神经网络:卷积层中的神经元只与输入数据的一个局部区域连接,这反映了图像的局部性质。

4.平移不变性:

前馈神经网络:不具备平移不变性,即对输入数据的平移会改变网络的输出。
卷积神经网络:由于卷积操作的性质,卷积网络具有平移不变性,这意味着即使图像在空间上发生了平移,网络仍然能够识别出相同的模式。

5.池化操作:

前馈神经网络:不包含池化层,因此不会减少数据的空间维度。
卷积神经网络:通过池化层减少数据的维度,同时保留最重要的信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1711811.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于Linux软链你必须知道的实用知识点(非常详细)零基础入门到精通,收藏这一篇就够了

背景 Linux中的软链,是非常强大的工具,如果只是一知半解,在解决问题时一定会让你栽跟头或者浪费大量的时间。非常有必要提前掌握Linux软链的几个实用的知识点。 分析 软链是什么? 在Linux中,软链接(sym…

Echarts 实现线条绘制

文章目录 需求分析 需求 用 Echarts 实现如下效果 分析

PS Adobe Photoshop 2024 for Mac[破]图像处理软件[解]PS 2024安装教程[版]

Adobe Photoshop 2024 for Mac[破]图像处理软件[解]PS 2024安装教程[版] 原文地址:https://blog.csdn.net/weixin_48311847/article/details/139248839

mysql去除重复数据

需求描述 doc表有很多重复的title,想去除掉重复的记录 表结构 CREATE TABLE doc (id INT PRIMARY KEY,title VARCHAR(255),content TEXT );去重SQL -- 创建临时表 CREATE TEMPORARY TABLE temp_doc AS SELECT * FROM doc WHERE 10;-- 插入唯一的记录(每个title最…

【ARM+Codesys案例】基于全志T3+Codesys软PLC的3C点胶边缘控制解决方案:整合了运动控制、视觉、激光测高等技术

视觉精密点胶控制方案 针对直交型机构的平面点涂胶应用,基于CODESYS软件平台开发的一站式PC型控制器解决方案,包含运动控制器硬件和点胶应用软件。方案整合了运动控制、视觉、激光测高等技术,高效精密的控制胶水点涂于产品表面或内部&#x…

使用ETL读取文件数据并快速写入mysql中

本文介绍使用国产的ETL工具ETLCloud平台来读取文件文件中的数据到mysql数据库中,首先需要安装ETLCloud的社区版本,然后在示例应用中创建一个文件读取流程如下: 点击“流程设计”后打开流程图如下 打开文本文件读取节点配置要读取的文件目录和…

【数据结构(邓俊辉)学习笔记】二叉树04——Huffman树

文章目录 0. 概述1. 无前缀冲突编码2. 编码成本3. 带权编码成本4. 编码算法5. 算法实现流程6. 时间复杂度与改进方案 0. 概述 学习Huffman树。 1. 无前缀冲突编码 在加载到信道上之前,信息被转换为二进制形式的过程称作编码(encoding)&…

免费插件集-illustrator插件-Ai插件-文本对象分行

文章目录 1.介绍2.安装3.通过窗口>扩展>知了插件4.功能解释5.总结 1.介绍 本文介绍一款免费插件,加强illustrator使用人员工作效率,进行文本对象分行。首先从下载网址下载这款插件 https://download.csdn.net/download/m0_67316550/87890501&…

python数据处理中的类型检查与转换技巧

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、类型检查的重要性 二、类型检查与转换技巧 1. 识别数据类型不一致 2. 使用astype()方…

CSS学习笔记:rem实现移动端适配的原理——媒体查询

移动端适配 移动端即手机端,也称M端 移动端适配:同一套移动端页面在不同屏幕尺寸的手机上可以实现宽度和高度的自适应,也就是页面中元素的宽度和高度可以根据屏幕尺寸的变化等比缩放 rem配合媒体查询可实现移动端适配 rem单位 媒体查询 …

校企携手|泰迪智能科技与高新启动「大数据应用技术」深度合作项目

5月22日,广东泰迪智能科技股份有限公司携手广东省高新技术高级技工学校举行“泰迪高新技术学校大数据双创工作室”暨广东省“产教评”技能生态链学生学徒公共实训基地签约揭牌仪式,标志着双方合作共建大数据应用技术专业、产教生态链实训基地及泰迪高新大…

【机器学习】Chameleon多模态模型探究

Chameleon:引领多模态模型的新时代 一、多模态模型的时代背景二、Chameleon模型的介绍三、Chameleon模型的技术特点四、Chameleon模型的性能评估五、Chameleon模型的代码实例 随着人工智能技术的深入发展,我们逐渐认识到单一模态的模型在处理复杂问题时存…

MySQL--二进制日志

目录 一、作用 二、binlog配置 1.查看当前配置 2.修改配置文件​ 3.binlog配置参数解释 三、binlog记录内容说明 1.记录内容 2.DDL、DCL记录格式 3.DML记录格式 4.记录内容查看 四、bin_log_format 记录模式 1.行模式 Row 2.语句模式 Statement 3.混合模式 五、…

亚信安慧AntDB数据库与华为数据存储完成兼容性互认证

迎接数智时代,供给核心科技。日前,湖南亚信安慧科技有限公司(简称:亚信安慧)与华为技术有限公司(简称:华为),完成了AntDB数据库产品与OceanProtect备份一体机及Oceanstor…

Autoware 技术代码解读(三)

Tip: 如果你在进行深度学习、自动驾驶、模型推理、微调或AI绘画出图等任务,并且需要GPU资源,可以考虑使用Compshare的GPU算力云平台。他们提供高性价比的4090 GPU,按时收费每卡2.6元,月卡只需要1.7元每小时,并附带200G…

物联网应用系统与网关

一. 传感器底板相关设计 1. 传感器设计 立创EDA传感器设计举例。 2. 传感器实物图 3. 传感器测试举例 测试激光测距传感器 二. 网关相关设计 1. LORA,NBIOT等设计 2. LORA,NBIOT等实物图 3. ZigBee测试 ZigBee测试 4. NBIoT测试 NBIoT自制模块的测试…

LAMP集群分布式实验报告

前景: 1.技术成熟度和稳定性: LAMP架构(Linux、Apache、MySQL、PHP)自1998年提出以来,经过长时间的发展和完善,已经成为非常成熟和稳定的Web开发平台。其中,Linux操作系统因其高度的灵活性和稳…

​LabVIEW超声波检测

LabVIEW超声波检测 在现代工业生产和科学研究中,超声检测技术因其无损性、高效率和可靠性而被广泛应用于材料和结构的缺陷检测。然而,传统的超声检测仪器往往依赖于操作者的经验和技能,其检测过程不够智能化,且检测结果的解读具有…

【产品运营】对接上游电商平台需要了解什么?

围绕卖家和平台的运营模式等维度,ISV对接平台可以划分为业务域、开放能力域和产品能力域。 ISV对接平台的最终目地是打通多方数据传输,解决卖家日常运营中的场景起到类似于业务中台的作用。因此我们可以围绕卖家和平台的运营模式等维度划分为&#xff1a…

电脑下载了caj却打不开文献?使用CAJ阅读器,支持caj转word

如果电脑下载了CAJ文件却打不开文献,这通常是因为没有安装合适的阅读器。CAJ文件是中国知网的一种专用全文阅读格式,需要使用专门的CAJ阅读器(CAJViewer)来打开和阅读。 首先:使用CAJ阅读器 请确保你已经正确安装了CA…