R实验 参数估计

news2024/11/19 23:25:21

  • 实验目的:
  1. 掌握矩法估计与极大似然估计的求法;
  2. 了解估计量的优良性准则:无偏性、有效性、相合性(一致性);
  3. 学会利用R软件完成一个正态总体均值和两个正态总体均值差的区间估计;
  4. 学会利用R软件完成两个成对数据均值差的区间估计;
  5. 学会利用R软件完成一个总体比例和两个总体比例差的区间估计;
  6. 掌握大样本数据关于单个总体均值和总体比例的样本容量的确定方法。

实验内容:

(习题5.1)下表列出 50 个抽取自二项分布总体 B(n, p) 的数据(数据存放在 binom . data件中),试用矩估计方法估计参数np

来自二项分布总体的数据

15

16

14

15

16

11

15

15

12

14

14

14

12

14

12

15

14

14

12

14

15

17

18

10

13

12

15

17

16

18

17

12

10

15

13

12

14

16

16

16

15

11

13

15

16

17

14

11

16

17

解:若将n作为未知参数,则需要同时考虑一阶矩和二阶矩。

总体的一阶矩和二阶矩分别为:

a1 =E(X)= npa2 =E(X 2)= var(X)+(E(x))2 = np(1-p)+(np)2,

根据矩估计的基本思想,a1 = A1,a2 = A2,(其中

即有

解上述方程组,可得

以下请根据上式完成R程序,计算出参数np的矩估计量的值

(参考n = 20.0284,p = 0.713986)

源代码:

# 读取数据

data <- scan("C:/Users/黄培滇/Desktop/R语言生物统计学/chap05/binom.data")



# 计算参数估计

m1 <- mean(data)

m2 <- mean(data^2)



p=1+m1-m2/m1

n=m1/p

p

n

  

运行结果或截图:

(习题5.2)设总体X的分布密度函数为

从总体X抽取的样本为:

0.1  0.2  0.9  0.8  0.7  0.7  0.6  0.5

求参数a 的极大似然估计量

解:

X1,X2,…,Xn 为其样本,只需要考虑xÎ(0, 1)部分。依题意,

此分布的似然函数为         L(a ; x) =

相应的对数似然函数为       ln L(a ; x) = n ln(a +1)+ a ln

令           

 ln=0

解此似然方程得到

,或写为

容易验证

,从而a 使得L达到极大,即参数a 的极大似然估计量

以下请根据上式完成R程序,计算出参数a 的极大似然估计量的值。

源代码:

data<-c(0.1,0.2,0.9,0.8,0.7,0.7,0.6,0.5)

n<-length(data)

alpha_hat<-n/(-sum(log(data)))-1

alpha_hat

运行结果或截图:

补充:求参数a 的矩估计量。由于只有一个参数,因此只需要考虑a1 = A1,即E(X)=

而由E(X)的定义有:E(X)=

因此,解得

以下请根据上式完成R程序,计算出参数a 的矩估计量的值,并与其极大似然估计量的值进行比较。

源代码:

data<-c(0.1,0.2,0.9,0.8,0.7,0.7,0.6,0.5)

data_bar<-mean(data)

alpha_hat_moment<-(data_bar-1)*(data_bar+2)

alpha_hat_moment

运行结果或截图:

(习题5.4)为研究新生儿出生时的体重,随机地选取了某妇产医院的100个新生儿,其样本均值为3338g,样本标准差为629g。试计算新生儿平均体重的置信水平为95%的置信区间。

提示:参考例5.6

解:源代码及运行结果:(复制到此处,不要截图)

birth_bar<-3338

birth_S<-629

n<-100

alpha<-0.05

z<-qnorm(1-alpha/2)

c(birth_bar - birth_S/sqrt(n)*z,birth_bar + birth_S/sqrt(n)*z)

结论:

(习题5.5)某妇产医院有意估计产妇在该医院住院的平均天数,在过去的年份中随机抽取了 36位孕妇,每位孕妇住院天数取整后如下表所示(数据存放在 hospital.data 文件中)。使用这些数据构建 95% 的置信区间,估计在该医院生小孩的所有孕妇的平均住院天数。

提示:参考例5.10。由于此题是小样本数据,也可以直接使用t.test()函数。

解:源代码及运行结果:(复制到此处,不要截图)

> H_data<-scan("C:\\Users\\黄培滇\\Desktop\\R语言生物统计学\\chap05\\hospital.data")

Read 36 items

> H_bar<-mean(H_data);S<-sd(H_data)

> n<-length(H_data)

> alpha<-0.05

> t<-qt(1-alpha/2,df = n-1)

> c(H_bar - S/sqrt(n)*t,H_bar + S/sqrt(n)*t)

[1] 2.910812 3.700299

结论:

即95%的产妇在医院的平均住院时间在2~3天

(习题5.8)已知某种灯泡寿命服从正态分布,在某星期所生产的该灯泡中随机抽取10 只,测得其寿命(单位:小时)为

1067  919  1196  785  1126  936  918  1156  920  948

求灯泡寿命平均值的置信度为0.95的单侧置信下限。

提示:此题是一个正态总体的区间估计问题,且由于总体方差未知,因此可以直接使用R语言中t.test()函数进行分析。参考例5.11,单侧置信下限,t.test()函数中的参数alternative="greater"。

解:源代码及运行结果:(复制到此处,不要截图)

> L<-c(1067,919,1196,785,1126,936,918,1156,920,948)

> t.test(L,alternative="greater")

One Sample t-test

data:  L

t = 23.969, df = 9, p-value = 9.148e-10

alternative hypothesis: true mean is greater than 0

95 percent confidence interval:

 920.8443      Inf

sample estimates:

mean of x

    997.1

结论:

即这批灯泡中95%的平均寿命在997.1小时以上

(习题5.11)某调查公司对 902 名高尔夫女选手进行了一项调查,以了解女选手怎样看待自己在比赛中的安排。调查结果显示 397 名女选手对下午茶的时间感到满意。(1) 试计算所有女选手对下午茶的时间感到满意的置信区间,这里取置信水平为 0.95; (2) 如果使用binom. test ()函数精确计算两者相差多少?

提示:参考例5.12。

解:源代码及运行结果:(复制到此处,不要截图)

> my<-397;w<-902> p<-my/w;q<-1-p> alpha<-0.05;z<-qnorm(1-alpha/2)

> c(p-z*sqrt(p*q/w),p+z*sqrt(p*q/w))

0.4077379 0.4725281

> binom.test(my,w)

Exact binomial test

data:  my and w

number of successes = 397, number of trials =

902, p-value = 0.0003617

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

 0.4074246 0.4732337

sample estimates:

probability of success

              0.440133

结论:

即在女子高尔夫比赛时间安排中,女选手对下午茶的时间满意总体比例在0.407~0.473的概率是95%

两者相差0.440133

(续习题5.12)如果希望新生儿的平均体重与总体均值的边际误差不超过 100 ,应从该妇产医院随机地选取多少名新生儿?

提示:例5.13。

解:源代码及运行结果:(复制到此处,不要截图)

> birth_S<-629

> E<-100

> alpha<-0.05

> z<-qnorm(1-alpha/2);

> (n<-z^2*birth_S^2/E^2)

[1] 151.9839

结论:

说明还需要从妇产医院再随机抽取52名新生儿

(习题5.13)某汽车营销公司计划估计某地区拥有小汽车家庭所占的比重,要求边际误差不超过5%,置信水平取 90%, 问应抽取多少样本?公司调查人员认为,拥有小汽车家庭的实际比重不会超过 20%,如果这一结论成立,应抽取多少样本?

提示:例5.14。

解:源代码及运行结果:(复制到此处,不要截图)

> p<-0.2;E<-0.05;alpha<-0.1

> z<-qnorm(1-alpha/2)

> (n<-z^2*p*(1-p)/E^2)

[1] 173.1548

结论:

即需要随机抽取174个家庭

(习题5.16)甲、乙两种稻种分别播种在10块试验田中,每块试验田甲、乙稻种各种一半。假设两稻种产量X, Y均服从正态分布,且方差相等。收获后10块试验田的产量如下所示(单位:千克)。

甲种

140

137

136

140

145

148

140

135

144

141

乙种

135

118

115

140

128

131

130

115

131

125

求出两稻种产量的期望差m1-m2的置信区间(a =0.05)。

提示:此题是两个正态总体的区间估计问题,且由于两总体方差未知,因此可以直接使用R语言中t.test()函数进行分析。t.test()可做两正态样本均值差的估计。注意此例中两样本方差相等。

解:源代码及运行结果:(复制到此处,不要截图)

> a<-c(140,137,136,140,145,148,140,135,144,141)

> b<-c(135,118,115,140,128,131,130,115,131,125)

> a_bar<-mean(a);Sa<-sd(a);na<-length(a)

> b_bar<-mean(b);Sb<-sd(b);nb<-length(b)

> alpha<-0.05;z<-qnorm(1-alpha/2)

> S<-sqrt(Sa^2/na + Sb^2/nb)

> c(a_bar - b_bar - z*S,a_bar - b_bar + z*S)

[1]  7.956516 19.643484

结论:

两个稻种产量的期望差在95%的置信水平下位于[7.96, 19.64]这个区间内。

(习题5.17)甲、乙两组生产同种导线,现从甲组生产的导线中随机抽取4根,从乙组生产的导线中随机抽取5根,它们的电阻值(单位:W)分别为

甲组

0.143

0.142

0.143

0.137

已组

0.140

0.142

0.136

0.138

0.140

假设两组电阻值分别服从正态分布N(m1, s 2)和N(m1, s 2),s 2未知。试求m1-m2的置信区间系数为0.95的区间估计。

提示:此题是两个正态总体的估计问题,且由于两总体方差未知,因此可以直接使用R语言中t.test()函数进行分析。t.test()可做两正态样本均值差的估计。注意此例中两样本方差相等。

解:源代码及运行结果:(复制到此处,不要截图)

> x <- c(0.143, 0.142, 0.143, 0.137)

> y <- c(0.140, 0.142, 0.135, 0.138, 0.140)

> x_bar <- mean(x)> Sx <- sd(x)

> nx <- length(x)> y_bar <- mean(y)

> Sy <- sd(y)> ny <- length(y)

> Sw2 <- ((nx - 1) * Sx^2 + (ny - 1) * Sy^2) / (nx + ny - 2)

> S <- sqrt(Sw2 * (1/nx + 1/ny))

> alpha <- 0.05> t <- qt(1 - alpha/2, nx + ny - 2)

> conf_interval <- c(x_bar - y_bar - t*S, x_bar - y_bar + t*S)

> conf_interval

[1] -0.002104423  0.006604423

结论:

两组之差的置信区间系数为0.95的区间估计为-0.002,0.007

思考:

常用的点估计的方法有哪些?

矩估计法;极大似然估计法;

估计量的优良性准则有哪些?

估计量的优良性准则:无偏性、有效性、相合性(一致性)

在对单个总体样本均值进行区间估计时,可以使用Z统计量和T统计量,这两个统计量分别在什么情况下使用?

总体标准差已知且样本容量较大,则可以使用Z统计量进行区间估计;

如果总体标准差未知或者样本容量较小,则应使用T统计量进行区间估计

对于单个总体比例的区间估计问题,涉及到其实是二项分布。但是当满足
    n大于等于30                条件时,也可以近似使用正态分布来计算。

对于单个总体比例的区间估计,涉及的是二项分布。因此在R语言中,可以使用binom.test()函数进行区间估计,它是精确检验函数,通常用于小样本数据;当处理大样本数据时,在R语言并没有使用正态分布函数,而是使用了  prop.test()      分布函数?同样,在使用这个分布函数时,仍然需要满足 样本容量足够大,且满足二项分布近似正态性                   条件。

在对两个总体样本均值差进行区间估计时,可以使用Z统计量和T统计量,这两个统计量分别在什么情况下使用?

两个总体标准差已知,用Z统计量

两个总体标准差未知,用T统计量

在对两个总体样本均值差进行区间估计时,如果使用了T统计量,还要进一步考虑两个总体的     方差      是否相同 ,来分别使用不同的T统计量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1709929.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

面试中算法(红包算法)

一、问题需求&#xff1a; 一个人在群里发了1个100元的红包&#xff0c;群里有5个人一起来抢红包&#xff0c;每人抢到的金额随机分配。 红包功能需要满足哪些具体规则呢? 1、所有人抢到的金额之和要等于红包金额&#xff0c;不能多也不能少。 2、每个人至少抢到1分钱。 3、要…

23ai中的True Cache到底能做啥?

最近&#xff0c;Oracle的产品管理总监在Oracle数据库内幕中介绍了True Cache。 原文链接如下&#xff1a; https://blogs.oracle.com/database/post/introducing-oracle-true-cache 由于这篇文章比较火爆&#xff0c;我们国内已经有很多的数据库爱好者完整的翻译这篇文章&am…

RAGFlow (https://github.com/infiniflow/ragflow/blob/main/README.md)

一个非常好的项目&#xff0c;可以让你用ollama部署的模型和自带rag的功能&#xff0c;界面也很清爽 几乎可以直接商用 使用教程看README.md就可以&#xff0c;从下面开始

DevOps实践:通过云效实现hexo自动构建部署发布

DevOps&#xff08;Development和Operations的组合词&#xff09;是一组过程、方法与系统的统称&#xff0c;用于促进开发&#xff08;应用程序/软件工程&#xff09;、技术运营和质量保障&#xff08;QA&#xff09;部门之间的沟通、协作与整合。这是一种重视“软件开发人员&a…

Clickhouse Bitmap 类型操作总结—— Clickhouse 基础篇(四)

文章目录 创建 Bitmap 对象Bitmap 转换为整数数组计算总数&#xff08;去重&#xff09;值指定start, end 索引生成子 Bitmap指定 start 索引和数量限制生成子 Bitmap指定偏移量生成子 Bitmap是否包含指定元素两个 Bitmap 是否存在相同元素一个是否为另一个 Bitmap 的子集求最小…

Layui 项目打开左侧菜单空白解决方案

home/index.html 页面中 替换 navigation 为 menu

视图【mysql数据库】

目录 一、视图的创建、查看、修改、删除 二、cascaded、local检查选项 cascaded和local的区别 三、视图的更新 四、视图的作用 一、视图的创建、查看、修改、删除 二、cascaded、local检查选项 上面的几句SQL中&#xff0c;我们虽然给视图插入了id 30的数据&#xff0c;但…

jQuery下载教程

官网&#xff1a;https://jquery.com/ ** ** 点击为压缩版本 将网站打开 界面上邮件保存为js文件即可 在html文件中引入即可 <html> <head></head> <body><script src"./js/jquery-3.6.3.js"> </script> </body> <…

HashMap在Go与Java的底层实现与区别

在Java中 在Java中hash表的底层数据结构与扩容等已经是面试集合类问题中几乎必问的点了。网上有对源码的解析已经非常详细了我们这里还是说说其底层实现。 基础架构 public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable,…

响应式流和reactor框架进阶

响应式流和reactor框架进阶 响应式流创建、转换、处理 本文档主要介绍在响应式编程中如何从流中获取数据并处理。 前提条件 假设您已经能掌握Java基础、Maven使用、Lamda表达式、响应式编程等基础。 如何获取流中数据 &#x1f30f; 说明 1、不要试图从流中获取数据出来&a…

大模型部署_书生浦语大模型 _作业2

本节课可以让同学们实践 4 个主要内容&#xff0c;分别是&#xff1a; 1、部署 InternLM2-Chat-1.8B 模型进行智能对话 1.1安装依赖库&#xff1a; pip install huggingface-hub0.17.3 pip install transformers4.34 pip install psutil5.9.8 pip install accelerate0.24.1…

在线教程丨与 Sora 技术路线相似!全球首个开源文生视频 DiT 模型 Latte 一键部署

自OpenAI推出 Sora 以来&#xff0c;「文生视频」概念及相关应用备受瞩目。而伴随 Sora 的大热&#xff0c;其背后的关键技术&#xff0c;DiT(Diffusion Transformers) 也被「考古挖掘」了出来。 事实上&#xff0c;DiT 是一个文生图模型&#xff0c;该模型于两年前开源&#x…

linux 定时执行shell、python脚本

在linux里设置定时执行一般是用crontab&#xff0c;如果没有的话&#xff0c;可以先安装&#xff1a; 安装 查看是否安装 cron -v # 对于基于Debian的系统&#xff08;如Ubuntu&#xff09; sudo apt-get install cron# 对于基于RedHat的系统&#xff08;如CentOS&#xff…

基于Java实现震中附近风景区预警可视化分析实践

目录 前言 一、空间数据说明 1、表结构信息展示 2、空间范围查询 二、Java后台开发实现 1、模型层设计与实现 2、控制层设计与实现 三、Leaflet地图开发 1、地震震中位置展示 2、百公里风景区列表展示 3、风景区列表展示 4、附近风景区展示 四、总结 前言 地震这类…

打印机手动双面打印技巧

一、WORD和PDF &#xff08;1&#xff09;首先选择要打印的页面范围&#xff0c;然后选择仅奇数页打印 &#xff08;2&#xff09;将打印完的纸张翻过来&#xff0c;白纸朝上&#xff0c;纸张的头部先放入打印机 &#xff08;3&#xff09;选择要打印的页面范围&#xff0c;然…

【problem】解决EasyExcel导出日期数据显示为#####问题

前言 在使用EasyExcel进行数据导出时&#xff0c;你可能遇到日期或其他数据在Excel中显示为“#######”的情况&#xff0c;这通常是因为列宽不足以展示单元格内的全部内容。本文将指导你如何通过简单的步骤解决这一问题&#xff0c;并确保导出的Excel文件自动调整列宽或直接指…

成都蓝蛙科技引领AIGC创新,亮相中国AIGC开发者大会

2024年5月25日&#xff0c;第三届AIGC中国开发者大会在北京举行&#xff0c;蓝蛙科技公司CEO兼创始人李辰受邀出席并发表主题演讲。作为开源框架GeneralAgent的作者&#xff0c;发表了题为“Agent框架的挑战和解决方案”的精彩演讲。李辰先生深入探讨了在构建和部署基于大型语言…

git冲突

git冲突的产生&#xff1a; 首先用户A新建一个文件conflict&#xff0c;并在里面添加内容 然后通过add,commit,push将该文件上传到远端仓库 然后用户B通过pull将程序拉下来之后&#xff0c;也在这个文档里面进行编辑&#xff0c;并且内容不一样 如果这个时候其中一个人push&…

Redis面试题深度解析

1、我看你做的项目中&#xff0c;都用到了redis&#xff0c;你在最近的项目中哪些场景使用了redis呢? 2、缓存穿透 布隆过滤器的误判现象 Redisson和Guava都对布隆过滤器进行了实现 3、缓存击穿 互斥锁&#xff0c;就是一个线程来修改&#xff0c;并占据了锁&#xff0c;另外其…

C#--Mapster(高性能映射)用法

1.Nuget安装Mapster包引用 2.界面XAML部分 <Window x:Class"WpfApp35.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.m…