大模型完成预训练后不是就万事大吉了,离推理应用还有很大距离,需要经过微调、部署等一系列工程化工作。尤其是在2B的行业大模型应用中,为解决大模型的幻觉、时效性和推理成本问题,需要建立单一模型之上的体系。模型部署中的技术大致可以分为三个层面,最上层是和各种应用的对接,各种用户界面的设计,这一层不在本报告的范围之内;最下层是推理需要配置的算力、存储等软硬件架构,属于IAAS层,本报告也不做探讨;中间就是模型本身一层的技术,即模型层部署和推理中的技术,包括模型部署框架的设计,Agent技术和Prompt Engineering等。其中模型部署框架是为大模型提供一系列补充能力的架构设计,例如调用小模型、记忆等;Agent智能体是对大模型的整体升级;而Prompt Engineering是提升大模型回答准确性的重要手段。本报告对这三方面的技术进行粗浅描述,仅供参考。总之,大模型工程化部署的技术还在迅速发展中,把大模型应用做好也需要丰富的经验和技术能力。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。