【SpringBoot高级篇】SpringBoot集成RocketMQ消息队列]

news2025/1/10 1:48:49

【SpringBoot高级篇】SpringBoot集成RocketMQ消息队列]

  • RocketMQ简介
    • 技术架构
    • 基本概念
  • Docker环境安装RocketMQ
  • rocketmq-client消息发送
    • 基本样例
      • 消息发送
        • 发送同步消息
        • 发送异步消息
        • 单向发送消息
      • 消费消息
        • 负载均衡模式
        • 广播模式
    • 顺序消息
      • 顺序消息生产
      • 顺序消费消息
    • 延时消息
      • 启动消息消费者
      • 发送延时消息
      • 验证
      • 使用限制
    • 批量消息
      • 发送批量消息
    • 过滤消息
      • SQL基本语法
      • 消息生产者
      • 消息消费者
    • 事务消息
      • 流程分析
        • 事务消息发送及提交
        • 事务补偿
        • 事务消息状态
      • 发送事务消息
        • 创建事务性生产者
        • 实现事务的监听接口
      • 使用限制
  • SpringBoot整合RocketMQ
    • 生产者服务
      • pom
      • application.yml
      • 生产者类
      • 启动类
    • 消费者服务
      • pom
      • application.yml
      • 消费者监听类

RocketMQ简介

RocketMQ是阿里巴巴2016年MQ中间件,使用Java语言开发,在阿里内部,RocketMQ承接了例如“双11”等高并发场景的消息流转,能够处理万亿级别的消息。

技术架构

在这里插入图片描述

RocketMQ架构上主要分为四部分,如上图所示:

  • Producer:消息发布的角色,支持分布式集群方式部署。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投递,投递的过程支持快速失败并且低延迟。
  • Consumer:消息消费的角色,支持分布式集群方式部署。支持以push推,pull拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制,可以满足大多数用户的需求。
  • NameServer:NameServer是一个非常简单的Topic路由注册中心,其角色类似Dubbo中的zookeeper,支持Broker的动态注册与发现。主要包括两个功能:Broker管理,NameServer接受Broker集群的注册信息并且保存下来作为路由信息的基本数据。然后提供心跳检测机制,检查Broker是否还存活;路由信息管理,每个NameServer将保存关于Broker集群的整个路由信息和用于客户端查询的队列信息。然后Producer和Conumser通过NameServer就可以知道整个Broker集群的路由信息,从而进行消息的投递和消费。NameServer通常也是集群的方式部署,各实例间相互不进行信息通讯。Broker是向每一台NameServer注册自己的路由信息,所以每一个NameServer实例上面都保存一份完整的路由信息。当某个NameServer因某种原因下线了,Broker仍然可以向其它NameServer同步其路由信息,Producer,Consumer仍然可以动态感知Broker的路由的信息。
  • BrokerServer:Broker主要负责消息的存储、投递和查询以及服务高可用保证

基本概念

1、消息模型(Message Model)

  • RocketMQ主要由 Producer、Broker、Consumer 三部分组成,其中Producer 负责生产消息,Consumer 负责消费消息,Broker 负责存储消息。Broker 在实际部署过程中对应一台服务器,每个 Broker 可以存储多个Topic的消息,每个Topic的消息也可以分片存储于不同的 Broker。Message Queue 用于存储消息的物理地址,每个Topic中的消息地址存储于多个 Message Queue 中。ConsumerGroup 由多个Consumer 实例构成。

2、消息生产者(Producer)

  • 负责生产消息,一般由业务系统负责生产消息。一个消息生产者会把业务应用系统里产生的消息发送到broker服务器。RocketMQ提供多种发送方式,同步发送、异步发送、顺序发送、单向发送。同步和异步方式均需要Broker返回确认信息,单向发送不需要。

3、消息消费者(Consumer)

  • 负责消费消息,一般是后台系统负责异步消费。一个消息消费者会从Broker服务器拉取消息、并将其提供给应用程序。从用户应用的角度而言提供了两种消费形式:拉取式消费、推动式消费。

4、生产者组(Producer Group)

  • 同一类Producer的集合,这类Producer发送同一类消息且发送逻辑一致。如果发送的是事物消息且原始生产者在发送之后崩溃,则Broker服务器会联系同一生产者组的其他生产者实例以提交或回溯消费。

5、消费者组(Consumer Group)

  • 同一类Consumer的集合,这类Consumer通常消费同一类消息且消费逻辑一致。消费者组使得在消息消费方面,实现负载均衡和容错的目标变得非常容易。要注意的是,消费者组的消费者实例必须订阅完全相同的Topic。RocketMQ 支持两种消息模式:集群消费(Clustering)和广播消费(Broadcasting)。

6、代理服务器(Broker Server)

  • 消息中转角色,负责存储消息、转发消息。代理服务器在RocketMQ系统中负责接收从生产者发送来的消息并存储、同时为消费者的拉取请求作准备。代理服务器也存储消息相关的元数据,包括消费者组、消费进度偏移和主题和队列消息等。

7、名字服务(Name Server)

  • 名称服务充当路由消息的提供者。生产者或消费者能够通过名字服务查找各主题相应的Broker IP列表。多个Namesrv实例组成集群,但相互独立,没有信息交换。

8、主题(Topic)

  • 表示一类消息的集合,每个主题包含若干条消息,每条消息只能属于一个主题,是RocketMQ进行消息订阅的基本单位。

9、标签(Tag)

  • 为消息设置的标志,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。

10、消息(Message)

  • 消息系统所传输信息的物理载体,生产和消费数据的最小单位,每条消息必须属于一个主题。RocketMQ中每个消息拥有唯一的Message ID,且可以携带具有业务标识的Key。系统提供了通过Message ID和Key查询消息的功能。

11、拉取式消费(Pull Consumer)

  • Consumer消费的一种类型,应用通常主动调用Consumer的拉消息方法从Broker服务器拉消息、主动权由应用控制。一旦获取了批量消息,应用就会启动消费过程。

12、推动式消费(Push Consumer)

  • Consumer消费的一种类型,该模式下Broker收到数据后会主动推送给消费端,该消费模式一般实时性较高。

13、集群消费(Clustering)

  • 集群消费模式下,相同Consumer Group的每个Consumer实例平均分摊消息。

14、广播消费(Broadcasting)

  • 广播消费模式下,相同Consumer Group的每个Consumer实例都接收全量的消息。

15、普通顺序消息(Normal Ordered Message)

  • 普通顺序消费模式下,消费者通过同一个消费队列收到的消息是有顺序的,不同消息队列收到的消息则可能是无顺序的。

16、严格顺序消息(Strictly Ordered Message)

  • 严格顺序消息模式下,消费者收到的所有消息均是有顺序的。

Docker环境安装RocketMQ

【Docker应用篇】Docker安装RocketMQ

rocketmq-client消息发送

  • 导入MQ客户端依赖
<dependency>
    <groupId>org.apache.rocketmq</groupId>
    <artifactId>rocketmq-client</artifactId>
    <version>4.4.0</version>
</dependency>
  • 消息发送者步骤分析
1.创建消息生产者producer,并制定生产者组名
2.指定Nameserver地址
3.启动producer
4.创建消息对象,指定主题Topic、Tag和消息体
5.发送消息
6.关闭生产者producer
  • 消息消费者步骤分析
1.创建消费者Consumer,制定消费者组名
2.指定Nameserver地址
3.订阅主题Topic和Tag
4.设置回调函数,处理消息
5.启动消费者consumer

基本样例

消息发送

发送同步消息

这种可靠性同步地发送方式使用的比较广泛,比如:重要的消息通知,短信通知。

public class SyncProducer {
	public static void main(String[] args) throws Exception {
    	// 实例化消息生产者Producer
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
    	// 设置NameServer的地址
    	producer.setNamesrvAddr("localhost:9876");
    	// 启动Producer实例
        producer.start();
    	for (int i = 0; i < 100; i++) {
    	    // 创建消息,并指定Topic,Tag和消息体
    	    Message msg = new Message("TopicTest" /* Topic */,
        	"TagA" /* Tag */,
        	("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
        	);
        	// 发送消息到一个Broker
            SendResult sendResult = producer.send(msg);
            // 通过sendResult返回消息是否成功送达
            System.out.printf("%s%n", sendResult);
    	}
    	// 如果不再发送消息,关闭Producer实例。
    	producer.shutdown();
    }
}

发送异步消息

异步消息通常用在对响应时间敏感的业务场景,即发送端不能容忍长时间地等待Broker的响应。

public class AsyncProducer {
	public static void main(String[] args) throws Exception {
    	// 实例化消息生产者Producer
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
    	// 设置NameServer的地址
        producer.setNamesrvAddr("localhost:9876");
    	// 启动Producer实例
        producer.start();
        producer.setRetryTimesWhenSendAsyncFailed(0);
    	for (int i = 0; i < 100; i++) {
                final int index = i;
            	// 创建消息,并指定Topic,Tag和消息体
                Message msg = new Message("TopicTest",
                    "TagA",
                    "OrderID188",
                    "Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET));
                // SendCallback接收异步返回结果的回调
                producer.send(msg, new SendCallback() {
                    @Override
                    public void onSuccess(SendResult sendResult) {
                        System.out.printf("%-10d OK %s %n", index,
                            sendResult.getMsgId());
                    }
                    @Override
                    public void onException(Throwable e) {
      	              System.out.printf("%-10d Exception %s %n", index, e);
      	              e.printStackTrace();
                    }
            	});
    	}
    	// 如果不再发送消息,关闭Producer实例。
    	producer.shutdown();
    }
}

单向发送消息

这种方式主要用在不特别关心发送结果的场景,例如日志发送。

public class OnewayProducer {
	public static void main(String[] args) throws Exception{
    	// 实例化消息生产者Producer
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
    	// 设置NameServer的地址
        producer.setNamesrvAddr("localhost:9876");
    	// 启动Producer实例
        producer.start();
    	for (int i = 0; i < 100; i++) {
        	// 创建消息,并指定Topic,Tag和消息体
        	Message msg = new Message("TopicTest" /* Topic */,
                "TagA" /* Tag */,
                ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
        	);
        	// 发送单向消息,没有任何返回结果
        	producer.sendOneway(msg);	

    	}
    	// 如果不再发送消息,关闭Producer实例。
    	producer.shutdown();
    }
}

消费消息

负载均衡模式

消费者采用负载均衡方式消费消息,多个消费者共同消费队列消息,每个消费者处理的消息不同

public static void main(String[] args) throws Exception {
    // 实例化消息生产者,指定组名
    DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("group1");
    // 指定Namesrv地址信息.
    consumer.setNamesrvAddr("localhost:9876");
    // 订阅Topic
    consumer.subscribe("Test", "*");
    //负载均衡模式消费
    consumer.setMessageModel(MessageModel.CLUSTERING);
    // 注册回调函数,处理消息
    consumer.registerMessageListener(new MessageListenerConcurrently() {
        @Override
        public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
                                                        ConsumeConcurrentlyContext context) {
            System.out.printf("%s Receive New Messages: %s %n", 
                              Thread.currentThread().getName(), msgs);
            return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
        }
    });
    //启动消息者
    consumer.start();
    System.out.printf("Consumer Started.%n");
}

广播模式

消费者采用广播的方式消费消息,每个消费者消费的消息都是相同的

public static void main(String[] args) throws Exception {
    // 实例化消息生产者,指定组名
    DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("group1");
    // 指定Namesrv地址信息.
    consumer.setNamesrvAddr("localhost:9876");
    // 订阅Topic
    consumer.subscribe("Test", "*");
    //广播模式消费
    consumer.setMessageModel(MessageModel.BROADCASTING);
    // 注册回调函数,处理消息
    consumer.registerMessageListener(new MessageListenerConcurrently() {
        @Override
        public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
                                                        ConsumeConcurrentlyContext context) {
            System.out.printf("%s Receive New Messages: %s %n", 
                              Thread.currentThread().getName(), msgs);
            return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
        }
    });
    //启动消息者
    consumer.start();
    System.out.printf("Consumer Started.%n");
}

顺序消息

消息有序指的是可以按照消息的发送顺序来消费(FIFO)。RocketMQ可以严格的保证消息有序,可以分为分区有序或者全局有序。

顺序消费的原理解析,在默认的情况下消息发送会采取Round Robin轮询方式把消息发送到不同的queue(分区队列);而消费消息的时候从多个queue上拉取消息,这种情况发送和消费是不能保证顺序。但是如果控制发送的顺序消息只依次发送到同一个queue中,消费的时候只从这个queue上依次拉取,则就保证了顺序。当发送和消费参与的queue只有一个,则是全局有序;如果多个queue参与,则为分区有序,即相对每个queue,消息都是有序的。

下面用订单进行分区有序的示例。一个订单的顺序流程是:创建、付款、推送、完成。订单号相同的消息会被先后发送到同一个队列中,消费时,同一个OrderId获取到的肯定是同一个队列。

顺序消息生产

/**
* Producer,发送顺序消息
*/
public class Producer {

   public static void main(String[] args) throws Exception {
       DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");

       producer.setNamesrvAddr("127.0.0.1:9876");

       producer.start();

       String[] tags = new String[]{"TagA", "TagC", "TagD"};

       // 订单列表
       List<OrderStep> orderList = new Producer().buildOrders();

       Date date = new Date();
       SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
       String dateStr = sdf.format(date);
       for (int i = 0; i < 10; i++) {
           // 加个时间前缀
           String body = dateStr + " Hello RocketMQ " + orderList.get(i);
           Message msg = new Message("TopicTest", tags[i % tags.length], "KEY" + i, body.getBytes());

           SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
               @Override
               public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
                   Long id = (Long) arg;  //根据订单id选择发送queue
                   long index = id % mqs.size();
                   return mqs.get((int) index);
               }
           }, orderList.get(i).getOrderId());//订单id

           System.out.println(String.format("SendResult status:%s, queueId:%d, body:%s",
               sendResult.getSendStatus(),
               sendResult.getMessageQueue().getQueueId(),
               body));
       }

       producer.shutdown();
   }

   /**
    * 订单的步骤
    */
   private static class OrderStep {
       private long orderId;
       private String desc;

       public long getOrderId() {
           return orderId;
       }

       public void setOrderId(long orderId) {
           this.orderId = orderId;
       }

       public String getDesc() {
           return desc;
       }

       public void setDesc(String desc) {
           this.desc = desc;
       }

       @Override
       public String toString() {
           return "OrderStep{" +
               "orderId=" + orderId +
               ", desc='" + desc + '\'' +
               '}';
       }
   }

   /**
    * 生成模拟订单数据
    */
   private List<OrderStep> buildOrders() {
       List<OrderStep> orderList = new ArrayList<OrderStep>();

       OrderStep orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("创建");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111065L);
       orderDemo.setDesc("创建");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("付款");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103117235L);
       orderDemo.setDesc("创建");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111065L);
       orderDemo.setDesc("付款");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103117235L);
       orderDemo.setDesc("付款");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111065L);
       orderDemo.setDesc("完成");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("推送");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103117235L);
       orderDemo.setDesc("完成");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("完成");
       orderList.add(orderDemo);

       return orderList;
   }
}

顺序消费消息

/**
* 顺序消息消费,带事务方式(应用可控制Offset什么时候提交)
*/
public class ConsumerInOrder {

   public static void main(String[] args) throws Exception {
       DefaultMQPushConsumer consumer = new 
           DefaultMQPushConsumer("please_rename_unique_group_name_3");
       consumer.setNamesrvAddr("127.0.0.1:9876");
       /**
        * 设置Consumer第一次启动是从队列头部开始消费还是队列尾部开始消费<br>
        * 如果非第一次启动,那么按照上次消费的位置继续消费
        */
       consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);

       consumer.subscribe("TopicTest", "TagA || TagC || TagD");

       consumer.registerMessageListener(new MessageListenerOrderly() {

           Random random = new Random();

           @Override
           public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) {
               context.setAutoCommit(true);
               for (MessageExt msg : msgs) {
                   // 可以看到每个queue有唯一的consume线程来消费, 订单对每个queue(分区)有序
                   System.out.println("consumeThread=" + Thread.currentThread().getName() + "queueId=" + msg.getQueueId() + ", content:" + new String(msg.getBody()));
               }

               try {
                   //模拟业务逻辑处理中...
                   TimeUnit.SECONDS.sleep(random.nextInt(10));
               } catch (Exception e) {
                   e.printStackTrace();
               }
               return ConsumeOrderlyStatus.SUCCESS;
           }
       });

       consumer.start();

       System.out.println("Consumer Started.");
   }
}

延时消息

比如电商里,提交了一个订单就可以发送一个延时消息,1h后去检查这个订单的状态,如果还是未付款就取消订单释放库存。

启动消息消费者

public class ScheduledMessageConsumer {
   public static void main(String[] args) throws Exception {
      // 实例化消费者
      DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("ExampleConsumer");
      // 订阅Topics
      consumer.subscribe("TestTopic", "*");
      // 注册消息监听者
      consumer.registerMessageListener(new MessageListenerConcurrently() {
          @Override
          public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> messages, ConsumeConcurrentlyContext context) {
              for (MessageExt message : messages) {
                  // Print approximate delay time period
                  System.out.println("Receive message[msgId=" + message.getMsgId() + "] " + (System.currentTimeMillis() - message.getStoreTimestamp()) + "ms later");
              }
              return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
          }
      });
      // 启动消费者
      consumer.start();
  }
}

发送延时消息

public class ScheduledMessageProducer {
   public static void main(String[] args) throws Exception {
      // 实例化一个生产者来产生延时消息
      DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup");
      // 启动生产者
      producer.start();
      int totalMessagesToSend = 100;
      for (int i = 0; i < totalMessagesToSend; i++) {
          Message message = new Message("TestTopic", ("Hello scheduled message " + i).getBytes());
          // 设置延时等级3,这个消息将在10s之后发送(现在只支持固定的几个时间,详看delayTimeLevel)
          message.setDelayTimeLevel(3);
          // 发送消息
          producer.send(message);
      }
       // 关闭生产者
      producer.shutdown();
  }
}

验证

您将会看到消息的消费比存储时间晚10秒

使用限制

// org/apache/rocketmq/store/config/MessageStoreConfig.java
private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h";

现在RocketMq并不支持任意时间的延时,需要设置几个固定的延时等级,从1s到2h分别对应着等级1到18

批量消息

批量发送消息能显著提高传递小消息的性能。限制是这些批量消息应该有相同的topic,相同的waitStoreMsgOK,而且不能是延时消息。此外,这一批消息的总大小不应超过4MB。

发送批量消息

如果您每次只发送不超过4MB的消息,则很容易使用批处理,样例如下:

String topic = "BatchTest";
List<Message> messages = new ArrayList<>();
messages.add(new Message(topic, "TagA", "OrderID001", "Hello world 0".getBytes()));
messages.add(new Message(topic, "TagA", "OrderID002", "Hello world 1".getBytes()));
messages.add(new Message(topic, "TagA", "OrderID003", "Hello world 2".getBytes()));
try {
   producer.send(messages);
} catch (Exception e) {
   e.printStackTrace();
   //处理error
}

如果消息的总长度可能大于4MB时,这时候最好把消息进行分割

public class ListSplitter implements Iterator<List<Message>> {
   private final int SIZE_LIMIT = 1024 * 1024 * 4;
   private final List<Message> messages;
   private int currIndex;
   public ListSplitter(List<Message> messages) {
           this.messages = messages;
   }
    @Override 
    public boolean hasNext() {
       return currIndex < messages.size();
   }
   	@Override 
    public List<Message> next() {
       int nextIndex = currIndex;
       int totalSize = 0;
       for (; nextIndex < messages.size(); nextIndex++) {
           Message message = messages.get(nextIndex);
           int tmpSize = message.getTopic().length() + message.getBody().length;
           Map<String, String> properties = message.getProperties();
           for (Map.Entry<String, String> entry : properties.entrySet()) {
               tmpSize += entry.getKey().length() + entry.getValue().length();
           }
           tmpSize = tmpSize + 20; // 增加日志的开销20字节
           if (tmpSize > SIZE_LIMIT) {
               //单个消息超过了最大的限制
               //忽略,否则会阻塞分裂的进程
               if (nextIndex - currIndex == 0) {
                  //假如下一个子列表没有元素,则添加这个子列表然后退出循环,否则只是退出循环
                  nextIndex++;
               }
               break;
           }
           if (tmpSize + totalSize > SIZE_LIMIT) {
               break;
           } else {
               totalSize += tmpSize;
           }

       }
       List<Message> subList = messages.subList(currIndex, nextIndex);
       currIndex = nextIndex;
       return subList;
   }
}
//把大的消息分裂成若干个小的消息
ListSplitter splitter = new ListSplitter(messages);
while (splitter.hasNext()) {
  try {
      List<Message>  listItem = splitter.next();
      producer.send(listItem);
  } catch (Exception e) {
      e.printStackTrace();
      //处理error
  }
}

过滤消息

在大多数情况下,TAG是一个简单而有用的设计,其可以来选择您想要的消息。例如:

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_EXAMPLE");
consumer.subscribe("TOPIC", "TAGA || TAGB || TAGC");

消费者将接收包含TAGA或TAGB或TAGC的消息。但是限制是一个消息只能有一个标签,这对于复杂的场景可能不起作用。在这种情况下,可以使用SQL表达式筛选消息。SQL特性可以通过发送消息时的属性来进行计算。在RocketMQ定义的语法下,可以实现一些简单的逻辑。下面是一个例子:

------------
| message  |
|----------|  a > 5 AND b = 'abc'
| a = 10   |  --------------------> Gotten
| b = 'abc'|
| c = true |
------------
------------
| message  |
|----------|   a > 5 AND b = 'abc'
| a = 1    |  --------------------> Missed
| b = 'abc'|
| c = true |
------------

SQL基本语法

RocketMQ只定义了一些基本语法来支持这个特性。你也可以很容易地扩展它。

  • 数值比较,比如:>,>=,<,<=,BETWEEN,=;
  • 字符比较,比如:=,<>,IN;
  • IS NULL 或者 IS NOT NULL;
  • 逻辑符号 AND,OR,NOT;

常量支持类型为:

  • 数值,比如:123,3.1415;
  • 字符,比如:‘abc’,必须用单引号包裹起来;
  • NULL,特殊的常量
  • 布尔值,TRUEFALSE

只有使用push模式的消费者才能用使用SQL92标准的sql语句,接口如下:

public void subscribe(finalString topic, final MessageSelector messageSelector)

消息生产者

发送消息时,你能通过putUserProperty来设置消息的属性

DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.start();
Message msg = new Message("TopicTest",
   tag,
   ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)
);
// 设置一些属性
msg.putUserProperty("a", String.valueOf(i));
SendResult sendResult = producer.send(msg);

producer.shutdown();

消息消费者

用MessageSelector.bySql来使用sql筛选消息

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4");
// 只有订阅的消息有这个属性a, a >=0 and a <= 3
consumer.subscribe("TopicTest", MessageSelector.bySql("a between 0 and 3");
consumer.registerMessageListener(new MessageListenerConcurrently() {
   @Override
   public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
       return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
   }
});
consumer.start();

事务消息

流程分析

在这里插入图片描述

上图说明了事务消息的大致方案,其中分为两个流程:正常事务消息的发送及提交、事务消息的补偿流程。

事务消息发送及提交

(1) 发送消息(half消息)。

(2) 服务端响应消息写入结果。

(3) 根据发送结果执行本地事务(如果写入失败,此时half消息对业务不可见,本地逻辑不执行)。

(4) 根据本地事务状态执行Commit或者Rollback(Commit操作生成消息索引,消息对消费者可见)

事务补偿

(1) 对没有Commit/Rollback的事务消息(pending状态的消息),从服务端发起一次“回查”

(2) Producer收到回查消息,检查回查消息对应的本地事务的状态

(3) 根据本地事务状态,重新Commit或者Rollback

其中,补偿阶段用于解决消息Commit或者Rollback发生超时或者失败的情况。

事务消息状态

事务消息共有三种状态,提交状态、回滚状态、中间状态:

  • TransactionStatus.CommitTransaction: 提交事务,它允许消费者消费此消息。
  • TransactionStatus.RollbackTransaction: 回滚事务,它代表该消息将被删除,不允许被消费。
  • TransactionStatus.Unknown: 中间状态,它代表需要检查消息队列来确定状态。

发送事务消息

创建事务性生产者

使用 TransactionMQProducer类创建生产者,并指定唯一的 ProducerGroup,就可以设置自定义线程池来处理这些检查请求。执行本地事务后、需要根据执行结果对消息队列进行回复。回传的事务状态在请参考前一节。

public class Producer {
    public static void main(String[] args) throws MQClientException, InterruptedException {
        //创建事务监听器
        TransactionListener transactionListener = new TransactionListenerImpl();
        //创建消息生产者
        TransactionMQProducer producer = new TransactionMQProducer("group6");
        producer.setNamesrvAddr("192.168.25.135:9876;192.168.25.138:9876");
        //生产者这是监听器
        producer.setTransactionListener(transactionListener);
        //启动消息生产者
        producer.start();
        String[] tags = new String[]{"TagA", "TagB", "TagC"};
        for (int i = 0; i < 3; i++) {
            try {
                Message msg = new Message("TransactionTopic", tags[i % tags.length], "KEY" + i,
                        ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
                SendResult sendResult = producer.sendMessageInTransaction(msg, null);
                System.out.printf("%s%n", sendResult);
                TimeUnit.SECONDS.sleep(1);
            } catch (MQClientException | UnsupportedEncodingException e) {
                e.printStackTrace();
            }
        }
        //producer.shutdown();
    }
}

实现事务的监听接口

当发送半消息成功时,我们使用 executeLocalTransaction 方法来执行本地事务。它返回前一节中提到的三个事务状态之一。checkLocalTranscation 方法用于检查本地事务状态,并回应消息队列的检查请求。它也是返回前一节中提到的三个事务状态之一。

public class TransactionListenerImpl implements TransactionListener {

    @Override
    public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
        System.out.println("执行本地事务");
        if (StringUtils.equals("TagA", msg.getTags())) {
            return LocalTransactionState.COMMIT_MESSAGE;
        } else if (StringUtils.equals("TagB", msg.getTags())) {
            return LocalTransactionState.ROLLBACK_MESSAGE;
        } else {
            return LocalTransactionState.UNKNOW;
        }

    }

    @Override
    public LocalTransactionState checkLocalTransaction(MessageExt msg) {
        System.out.println("MQ检查消息Tag【"+msg.getTags()+"】的本地事务执行结果");
        return LocalTransactionState.COMMIT_MESSAGE;
    }
}

使用限制

  1. 事务消息不支持延时消息和批量消息。
  2. 为了避免单个消息被检查太多次而导致半队列消息累积,我们默认将单个消息的检查次数限制为 15 次,但是用户可以通过 Broker 配置文件的 transactionCheckMax参数来修改此限制。如果已经检查某条消息超过 N 次的话( N = transactionCheckMax ) 则 Broker 将丢弃此消息,并在默认情况下同时打印错误日志。用户可以通过重写 AbstractTransactionCheckListener 类来修改这个行为。
  3. 事务消息将在 Broker 配置文件中的参数 transactionMsgTimeout 这样的特定时间长度之后被检查。当发送事务消息时,用户还可以通过设置用户属性 CHECK_IMMUNITY_TIME_IN_SECONDS 来改变这个限制,该参数优先于 transactionMsgTimeout 参数。
  4. 事务性消息可能不止一次被检查或消费。
  5. 提交给用户的目标主题消息可能会失败,目前这依日志的记录而定。它的高可用性通过 RocketMQ 本身的高可用性机制来保证,如果希望确保事务消息不丢失、并且事务完整性得到保证,建议使用同步的双重写入机制。
  6. 事务消息的生产者 ID 不能与其他类型消息的生产者 ID 共享。与其他类型的消息不同,事务消息允许反向查询、MQ服务器能通过它们的生产者 ID 查询到消费者。

SpringBoot整合RocketMQ

环境依赖

  • rocketmq:broker-4.5.1
  • rocketmq:server-4.5.1
  • spring-boot-starter-parent: 2.3.9.RELEASE
  • rocketmq-spring-boot-starter: 2.1.1

生产者服务

pom

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.apache.rocketmq</groupId>
        <artifactId>rocketmq-spring-boot-starter</artifactId>
        <version>2.1.1</version>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <version>1.18.6</version>
    </dependency>
</dependencies>

application.yml

server:
  port: 8082

rocketmq:
  name-server: 192.168.56.10:9876
  producer:
    group: my-group

生产者类

@RestController
public class MqProducer {

    @Autowired
    private RocketMQTemplate rocketMQTemplate;

    @GetMapping("/sendMsg")
    public String sendMsg(@RequestParam("msg") String msg) {
        rocketMQTemplate.convertAndSend("springboot-mq",msg);
        return "success";
    }
}

启动类

@SpringBootApplication
public class MQSpringBootApplication {
    public static void main(String[] args) {
        SpringApplication.run(MQSpringBootApplication.class);
    }
}

消费者服务

pom

<dependencies>
    <dependency>
        <groupId>org.apache.rocketmq</groupId>
        <artifactId>rocketmq-spring-boot-starter</artifactId>
        <version>2.1.1</version>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <version>1.18.6</version>
    </dependency>
</dependencies>

application.yml

server:
  port: 8081

rocketmq:
  name-server: 192.168.56.10:9876
  producer:
    group: my-group

消费者监听类

@Slf4j
@Component
@RocketMQMessageListener(topic = "springboot-mq",consumerGroup = "springboot-mq-consumer-1")
public class Consumer implements RocketMQListener<String> {

    @Override
    public void onMessage(String message) {
        log.info("Receive message:"+message);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/170480.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于M实现的JWT解决方案

文章目录基于M实现的JWT解决方案简介现状原理JWT 组成结构头部Header有效载荷Payload哈希签名SignatureJWT完整结果JWT基于M的使用流程总结完整代码基于M实现的JWT解决方案简介JWT 英文名是 Json Web Token &#xff0c;是一种用于通信双方之间传递安全信息的简洁的、URL安全的…

2023年,PMP认证考试的心得分享

对于刚开始要准备参加PMP考试的人&#xff0c;大多应该都是不知道怎么去考试复习好的。PMP认证考试虽是美国的考试&#xff0c;但其实这跟国内其它的考试复习也差不多&#xff0c;没有什么很特别之处&#xff0c;只是多了一个中英互译&#xff0c;再就是学习的内容不一样&#…

windows系统中环境系统变量和用户变量的区别

前言 -- 什么是环境变量一般我们安装软件之后&#xff0c;为了能够在cmd命令行运行软件&#xff0c;一般都需要设置一下环境变量&#xff0c;否则就会出现找不相关命令的错误提示。所谓环境变量&#xff0c;可以简单理解为就是给操作系统定义的一些路径和名称。比如使用最常使用…

个人对粗糙集的一些理解和简单举例

文章目录1、 数据价值密度低的解决方案1.1 粗糙集中对应的概念&#xff1a;属性约简1.2 属性约简的好处1.3 粗糙集的应用2、粗糙集的简介--->原理2.1 粗糙集的概念2.2 从例子看粗糙集2.3 粗糙集模型的分类及其评估标准3、粗糙集的主要研究方向3.1 模型创新3.2 属性约简3.3 提…

浅析正则表达式+范围规则校验表达式+js从字符串中截取数字

平时项目中经常需要用到正则表达式&#xff0c;可惜之前太懒(当然最主要是太菜也不会写)都是直接网上搜。之前用的也简单&#xff0c;无非是校验手机号码格式、校验邮箱格式、偶尔有校验密码这种&#xff0c;网上一搜一大堆&#xff0c;根本不用自己写&#xff0c;结果前段时间…

【ONE·C || 函数与数组】

总言 C语言&#xff1a;函数、数组初步认识。 文章目录总言1、函数1.1、是什么1.1.1、基本介绍1.1.2、库函数使用演示(strcpy、memset)1.1.3、自定义函数使用演示1.2、函数参数、传值调用和传址调用1.3、相关练习1.3.1、写一个函数&#xff1a;可以判断一个数是不是素数1.3.2、…

集成学习-理论概述

1、集成学习概述集成学习(ensemble learning)本身不是一个单独的机器学习算法&#xff0c;而是通过构建并结合多个机器学习器来完成学习任务。集成学习的特点&#xff1a;集成方法是一种将几种机器学习技术组合成一个预测模型的元算法&#xff0c;以减小方差&#xff08;baggin…

python-文件和异常

1. 从文件中读取数据1.1. 读取整个文件在同目录下创建textA文本文件123 456 789a. open函数&#xff1a;要以任何方式去使用文件&#xff0c;都需要先打开文件&#xff0c;它接受一个参数——要打开文件的名称。 open()返回一个表示文件的对象。b. 关键字with在不再需要访问文件…

可以自动生成日报的清单工具

用过了很多todolist工具&#xff08;Microsoft_ _To D、oodoist、滴答清单、印象笔记、有道笔记、&#xff09; 最终稳定一直在用的就这一个“闪点清单” 我的核心诉求就两点 1. 可以实时记录任务&#xff0c;并标记是否完成 2. 可以按天、周导出&#xff0c;自动整合成日报…

《计算机构造与解释》读书笔记(4)

文章目录1. 写在最前面2. 并发&#xff1a;时间是一个本质问题2.1 并发系统中时间的性质2.1.1 并发程序的正确行为2.2 控制并发的机制2.2.1 对共享变量的串行访问2.2.2 Schema 里的串行化2.2.3 使用多重共享资源的复杂性2.2.4 串行化实现2.2.5 死锁2.2.6 并发性、时间和通信3. …

Linux学习记录——구 进程概念的基础理解

文章目录一、操作系统概念理解二、进程的基本理解1、什么是进程&#xff1f;2、进程的属性1、指令查看进程2、目录查看进程3、进程与进程之间1、父子进程概念2、创建子进程---fork的基础使用方法3、fork原理的初级理解1、fork的操作2、fork如何看待代码和数据3、fork如何看待两…

【Docker概念和实践 2】虚拟机 ubuntu18上安装docker

一、说明 已经安装了N遍Docker了&#xff0c;逐步成了一套习惯&#xff0c;这里专门记录之&#xff1b;总之&#xff0c;安装前必须回答得问题是&#xff1a;何种操作系统、何种版本、是否虚拟机、云数据源等问题。一个环境如果装得好&#xff0c;就不需要重装&#xff0c;如果…

C语言刷题之摩尔投票法

目录 1.引入 2.摩尔投票算法 3.基本步骤 摩尔投票法分为两个阶段&#xff1a; 1.抵消阶段 2.检验阶段 4.代码实现 5.扩展沿伸 6.总结 1.引入 我们来看一个问题&#xff1a; 假设有一个无序数组长度为n&#xff0c;要求找出其中出现次数超过n/2的数&#xff0c;要求时间复…

vue3-环境搭建(docker版本)

序 大大小小项目经历无数&#xff0c;之前都是写的vue2的项目&#xff0c;因为项目需要&#xff0c;边学边用vue3&#xff0c;也算能转的开&#xff0c;但心里一直想系统的理顺一下vue3。 看了看极客时间&#xff0c;掘金小课&#xff0c;都没有能达到心里预期的“系统学习”…

免费内网穿透软件一步设置实现外网访问

在工作和生活中&#xff0c;有很多类似内网搭建服务器和外网连接内网的需求&#xff0c; 例如在任何地方都能访问自己家里的主机电脑笔记本上的应用&#xff0c;让出差外网和任何地方都能访问到公司内部局域网的服务器……这些需求我们可以统一用一个方案解决&#xff0c;那就是…

网络编程UDP+TCP

日升时奋斗&#xff0c;日落时自省 目录 1、网络编程基本概念 2、UDP数据报套接字编程 2.1、UDP相关API 2.1.1、DatagramSocket API 2.1.2、DatagramPacket API 2.2、UDP版本服务器 2.3、UDP版本客户端 2.4、UDP连接操作 2.5、翻译业务 2.6、总结 3、TCP流套接字编程 …

【项目实战】一文入门项目中Lombok的常用注解

一、Lombok介绍 1.1 Lombok是什么&#xff1f; 一个Java库&#xff0c;用于简化Java代码。 Lombok是一个非常神奇的 java 类库&#xff0c;会利用注解自动生成 java Bean 中烦人的 Getter、Setting&#xff0c;还能自动生成 logger、ToString、HashCode、Builder 等 java特色…

【GD32F427开发板试用】开发一款网络音乐播放器

本篇文章来自极术社区与兆易创新组织的GD32F427开发板评测活动&#xff0c;更多开发板试用活动请关注极术社区网站。作者&#xff1a;守勤 资源介绍 非常荣幸能够参与到这次GD32F427开发板试用的活动中来&#xff0c;开发板的设计非常简洁&#xff0c;板载了一颗GD32F103C8T6和…

Python中的递归及案例演示

目录 一.什么是递归 二.案例 递归找文件 步骤 os模块中的三个方法 演示 最终代码 三.总结 一.什么是递归 递归在编程中是一种非常重要的算法 递归:即方法(函数)自己调用自己的一种特殊编程写法 如&#xff1a; 函数调用自己&#xff0c;即称之为递归调用。 二.案例 递…

C++ 引用! 他是坤坤也是鸡哥

&#x1f451;专栏内容&#xff1a;C学习笔记⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;日拱一卒&#xff0c;功不唐捐 目录一、前言二、引用1、引用的概念2、引用的声明3、引用的特性Ⅰ、 引用在定义时必须初始化Ⅱ、 一个变量可以有多个引用Ⅲ、引…