sheng的学习笔记-AI-EM算法

news2025/1/4 18:29:08

AI学习笔记目录:sheng的学习笔记-AI目录-CSDN博客

目录

基础知识

什么是EM算法

EM算法简介

数学知识

极大似然估计

问题描述

用数学知识解决现实问题

最大似然函数估计值的求解步骤

Jensen不等式

定义

EM算法详解

问题描述

EM算法推导流程

EM算法流程

小结

EM算法实例


基础知识

什么是EM算法

EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussian mixture model,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。本文就对EM算法的原理做一个详细的总结。

EM算法简介

EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster、Laird和Rubin三人于1977年所做的文章《Maximum likelihood from incomplete data via the EM algorithm》中给出了详细的阐述。其基本思想是:首先根据己经给出的观测数据,估计出模型参数的值;然后再依据上一步估计出的参数值估计缺失数据的值,再根据估计出的缺失数据加上之前己经观测到的数据重新再对参数值进行估计,然后反复迭代,直至最后收敛,迭代结束。

数学知识

极大似然估计

问题描述

假如我们需要调查学校的男生和女生的身高分布 ,我们抽取100个男生和100个女生,将他们按照性别划分为两组。然后,统计抽样得到100个男生的身高数据和100个女生的身高数据。如果我们知道他们的身高服从正态分布,但是这个分布的均值 𝜇 和方差 𝛿2 是不知道,这两个参数就是我们需要估计的。

问题:我们知道样本所服从的概率分布模型和一些样本,我们需要求解该模型的参数。如图1所示。

我们已知的条件有两个:样本服从的分布模型、随机抽取的样本。我们需要求解模型的参数。根据已知条件,通过极大似然估计,求出未知参数。总的来说:极大似然估计就是用来估计模型参数的统计学方法。

用数学知识解决现实问题

最大似然函数估计值的求解步骤

Jensen不等式

定义

EM算法详解

问题描述

我们目前有100个男生和100个女生的身高,但是我们不知道这200个数据中哪个是男生的身高,哪个是女生的身高,即抽取得到的每个样本都不知道是从哪个分布中抽取的。这个时候,对于每个样本,就有两个未知量需要估计:

  1. 这个身高数据是来自于男生数据集合还是来自于女生?
  2. 男生、女生身高数据集的正态分布的参数分别是多少?

(1)初始化参数:先初始化男生身高的正态分布的参数:如均值=1.65,方差=0.15

(2)计算每一个人更可能属于男生分布或者女生分布;

(3)通过分为男生的n个人来重新估计男生身高分布的参数(最大似然估计),女生分布也按照相同的方式估计出来,更新分布。

(4)这时候两个分布的概率也变了,然后重复步骤(1)至(3),直到参数不发生变化为止。

EM算法推导流程

EM算法流程

小结

上面介绍的传统EM算法对初始值敏感,聚类结果随不同的初始值而波动较大。总的来说,EM算法收敛的优劣很大程度上取决于其初始参数。

EM算法可以保证收敛到一个稳定点,即EM算法是一定收敛的。

EM算法可以保证收敛到一个稳定点,但是却不能保证收敛到全局的极大值点,因此它是局部最优的算法,当然,如果我们的优化目标 𝑙(𝜃,𝜃𝑙) 是凸的,则EM算法可以保证收敛到全局最大值,这点和梯度下降法这样的迭代算法相同

EM算法是迭代求解最大值的算法,同时算法在每一次迭代时分为两步,E步和M步。一轮轮迭代更新隐含数据和模型分布参数,直到收敛,即得到我们需要的模型参数。

一个最直观了解EM算法思路的是K-Means算法。在K-Means聚类时,每个聚类簇的质心是隐含数据。我们会假设K个初始化质心,即EM算法的E步;然后计算得到每个样本最近的质心,并把样本聚类到最近的这个质心,即EM算法的M步。重复这个E步和M步,直到质心不再变化为止,这样就完成了K-Means聚类。当然,K-Means算法是比较简单的,高斯混合模型(GMM)也是EM算法的一个应用。

EM算法实例

参考文章

EM算法详解 - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1696874.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

绘制t-SNE图

什么是t-SNE图? 如下图,下图来源于论文Contrastive Clustering 一般用于分类问题/对比学习。 作用? 体现出经过层层训练,类内越来越紧密,类间差异越来越大;或者也可以做消融可视化。 怎么画&#xff1f…

如何安装虚拟机Wmware,并且在虚拟机中使用centos系统

1. 前言 大家好,我是jiaoxingk 本篇文章主要讲解如何安装虚拟机,并且在虚拟机中安装centos系统,让windows电脑也能够使用Linux系统 2. 虚拟机的介绍 在安装Vmware之前,我们先做虚拟机的介绍 虚拟机:通过软件虚拟出来的…

【吊打面试官系列】Java高并发篇 - 什么是乐观锁和悲观锁?

大家好,我是锋哥。今天分享关于 【什么是乐观锁和悲观锁?】面试题,希望对大家有帮助; 什么是乐观锁和悲观锁? 1、乐观锁: 就像它的名字一样,对于并发间操作产生的线程安全问题持乐观状态, 乐观锁认为竞争…

JAVAEE初阶多线程(4)

在前面的文章中简单的概述了线程的基本定义接下来就是线程的最后完结了。 1.工厂模式 1.1工厂模式的简单定义 (1)在java jar包中有一个工厂模式这是一种设计模式 (2)这个设计模式是为了更好的解决构造方法创建对象太坑了的问题…

安卓开发:相机水印设置

1.更新水印 DecimalFormat DF new DecimalFormat("#"); DecimalFormat DF1 new DecimalFormat("#.#");LocationManager LM (LocationManager)getSystemService(Context.LOCATION_SERVICE); LM.requestLocationUpdates(LocationManager.GPS_PROVIDER, 2…

urllib_post请求_百度翻译之详细翻译

百度翻译有一个详细翻译的接口: post请求: 请求参数(较多): 打印之后,发现有问题: 改一下请求头: 将Accept-Encoding注释掉,因为我们使用的是utf-8编码: 加上…

解决:LVGL+GUI Guider 1.7.2运行一段时间就会卡死死机,内存泄露溢出的问题

概括: 我在使用NXP官方GUI Guider生成的代码出现了内存泄漏的问题。但我遇到的并不是像其他人所说的style的问题,如下链接。而是因为在页面渲染之前就使用了该页面内的组件,内存就会不断增加。 LVGL 死机 内存泄漏_lvgl 内存溢出-CSDN博客 运…

..堆..

堆 堆是完全二叉树,即除了最后一列之外,上面的每一层都是满的(左右严格对称且每个节点都满子节点) 最后一列从左向右排序。 默认大根堆:每一个节点都大于其左右儿子,根节点就是整个数据结构的最大值 pr…

【Telemac】Telemac相关报错记录

文章目录 1.下载BlueKenue后缀为man解决办法2.运行Telemac项目提示Fortran报错解决办法1.下载BlueKenue后缀为man BlueKenue官方下载链接: 可以看到下载器请求时出现了问题,下载BlueKenue后缀为man. 解决办法 修改下载后的文件后缀为msi即可 2.运行Telemac项目提示Fortr…

视频号小店怎么进入优选联盟?入驻优选联盟都有什么条件?

大家好,我是电商花花。 视频号小店想要出单、爆单,不管在流量上还是销量都离不开达人带货,因为目前视频号小店上基本上就没有自然流量,想出单只能做达人带货。 而视频号小店想要找达人带货,必须是企业店铺&#xff0…

C++基础与深度解析 | 泛型算法 | bind | Lambda表达式

文章目录 一、泛型算法1.泛型算法的分类2.迭代器分类 二、bind与lambda表达式1.bind2.lambda表达式 三、泛型算法的改进--ranges(c20) 一、泛型算法 C中的泛型算法是标准模板库(STL)的一部分(这里重点讨论 C 标准库中定义的算法,而…

转置卷积简明教程

转置卷积层也被(错误地)称为反卷积层。反卷积层反转了标准卷积层的操作,即如果对通过标准卷积层生成的输出进行反卷积,则会返回原始输入。转置卷积层与反卷积层相似,因为两者生成的空间维度相同。转置卷积不是通过值反…

【闲聊】-Chrome DevTools简介与启动方法

Chrome DevTools简介与启动方法 Chrome DevTools是Chrome浏览器内置的一套网页开发调试工具,适用于前端开发人员。以下是如何启动DevTools以及各个面板的功能列表。 如何启动Chrome DevTools 快捷键启动: 在Windows/Linux上,按 F12 或 Ctrl…

1.手动LogisticRegression模型的训练和预测

通过这个示例,可以了解逻辑回归模型的基本原理和训练过程,同时可以通过修改和优化代码来进一步探索机器学习模型的训练和调优方法。 过程: 生成了一个模拟的二分类数据集:通过随机生成包含两个特征的数据data_x,并基于一定规则生…

博客说明 5/12~5/24【个人】

博客说明 5/12~5/24【个人】 前言版权博客说明 5/12~5/24【个人】对比最后 前言 2024-5-24 13:39:23 对我在2024年5月12日到5月24日发布的博客做一下简要的说明 以下内容源自《【个人】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作…

从浮点数定义到FP8: AI模型中不同的数据类型

背景:AI模型中不同的数据类型对硬件算力和内存的需求是不同的,为了提高模型在硬件平台的吞吐量,减少数据通信带宽需求,往往倾向于将高位宽数据运算转向较低位宽的数据运算。本文通过重新回顾计算机中整数和浮点数的定义&#xff0…

SQL面试题练习 —— 连续支付订单合并

目录 1 题目2 建表语句3 题解 1 题目 现有一张用户支付表:t_user_pay 包含字段订单ID,用户ID,商户ID,支付时间,支付金额。 如果同一用户在同一商户存在多笔订单,且中间该用户没有其他商户的支付记录&#…

JMeter学习笔记二

面试题: 1.做接口测试时,你是怎么做的数据校验(返回值验证)?一般你会验证哪些数据? 校验code 200(说明后端接到了你的请求,并且给了应答) 返回信息 sucess 2.有1w个用户名密码需要登录&#xff…

colmap在windows上编译好的程序直接可以运行支持cuda

1.colamp简介 COLMAP 是一种通用的运动结构 (SfM) 和多视图立体 (MVS) 管道,具有图形和命令行界面。它为有序和无序图像集合的重建提供了广泛的功能。 2.数据采集 手机或者相机 绕 物体拍一周,每张的角度不要超过30(保证有overlap区域&#…

梦幻西游手游挂机脚本,搬砖挂机赚米项目,号称单窗口日收益60+(教程+软件)

一、项目背景 随着智能手机的普及,手游市场逐渐成为人们娱乐生活的重要组成部分。其中,《梦幻西游》作为一款经典的国产手游,吸引了大量的玩家。然而,许多玩家因为工作、学习等原因,无法长时间在线游戏。因此&#xf…